ENACTING PAID FAMILY AND MEDICAL LEAVE POLICY: A QUANTITATIVE ANALYSIS ACROSS THE AMERICAN STATES

Kathleen Bever
Creighton University

Introduction

Paid family and medical leave policy is a topical policy debate in the United States. The Family and Medical Leave Act of 1993 was enacted as an effort to address the lack of a uniform family and medical leave policy in the United States, but the legislation only guarantees unpaid leave as opposed to paid leave. Currently, paid family and medical leave policy has not been enacted at the federal level. Since the implementation of the Family and Medical Leave Act of 1993, seven American states—California, New Jersey, Rhode Island, New York, Washington, Massachusetts, and Connecticut, in addition to the District of Columbia—have enacted their own versions of paid family and medical leave legislation.¹

American families, employers, and employees are significantly affected by paid family and medical leave legislation. Almost all Americans are influenced by paid family and medical leave policy at some point in their lives, so research on paid family and medical leave policy can help solve issues that still remain with such policies (or the lack of such policies). As policy debates regarding paid family and

medical leave policy continue to prompt political dialogue, research can help legislators produce sound policymaking decisions on the local, state, and national levels.

Several studies have examined policy diffusion, a central theory that aids in understanding policy enactment likelihood (Shipan and Volden 2012, Berry and Berry 1990, Shipan and Volden 2008, and Nicholson-Crotty 2009); others have looked at various issues related to family and medical leave policy, such as women’s representation in government (Kittilson 2008), party composition (Barrilleaux, Holbrook, and Langer 2002), and the influence of gross domestic product on national health care expenditures (Fuchs 2013). The research, however, has yet to combine policy diffusion research with paid family and medical leave policy research. This study attempts to fill this gap in the literature by linking these two areas together. Thus, the research question to be examined is, what influential factors explain the likelihood of paid family and medical leave policy enactment in the American states? To answer the research question, this study will conduct a formal test of policy diffusion, women’s representation in state legislatures, party compositions of state legislatures, and state annual per capita real gross domestic product (in chained 2012 dollars) to explain influences of the likelihood of enactment of state paid family and medical leave policies.

Fundamentals and Limitations of Existing Research of Paid Family and Medical Leave Policy

Existing research examines different components of paid family and medical leave policy in the American states. There is a lack of a prominent debate among scholars regarding variances in the enactment of state paid family and medical leave policies in the American states because research has focused on other related areas such as women’s representation (Kittilson 2008), electoral competition with Democratic majorities (Barrilleaux, Holbrook, and Langer 2002), and the influence of gross domestic product on health care spending (Fuchs 2013). The lack of a central debate signals the importance of the current research that examines explanations for likelihood of enactment of paid family and medical leave policy in the American states.

The examination of a particular policy field—in this case, paid family and medical leave in American states—is rooted in policy diffusion theory. In fact, Shipan and Volden write in their 2012 examination of policy diffusion, “...[U]nderstanding policy diffusion is
crucial to understanding policy advocacy and policy change more broadly.” However, while diffusion is a good explanation for many policies, there is a lack of previous literature on diffusion in relation to paid family and medical leave policy enactment. Research on policy diffusion is fundamental to the current research examination because it can aid in developing a broader understanding of how and why policies spread in addition to the research question at hand, which examines likelihood of the enactment of state paid family and medical leave policies.

Sh Gian and Volden define policy diffusion as “one government’s policy choices being influenced by the choices of other governments.” Berry and Berry fundamentally add to the myriad of policy diffusion research in their examination of state government innovation, citing a solid framework for understanding policy diffusion. According to Berry and Berry, two factors exist: internal determinants (such as the economic, social, and political characteristics of a state) and regional diffusion (which refers to the influence of a nearby state’s legislation on another state’s legislation).

First, adding to the body of policy diffusion literature, Shipan and Volden’s 2008 study examines mechanisms of policy diffusion through an analysis of antismoking laws between 1975 and 2000 using data from the National Cancer Institute’s State Cancer Legislative Database (SCLD) and the American Nonsmokers’ Rights (ANR) Foundation’s Local Tobacco Control Ordinance Database. To test their data, Shipan and Volden use logistic regression and standard Event History Analysis, finding four mechanisms of policy diffusion: “learning from earlier adopters, economic competition among

3 Shipan and Volden, “Policy Diffusion: Seven Lessons for Scholars and Practitioners,” 788.
proximate cities, imitation of larger cities, and coercion by state
governments.” Shipan and Volden’s results show that these
mechanisms of learning, competition, imitation, and coercion are
significant in the process of policy diffusion, adding to a fundamental
understanding of policy diffusion for further policy research. Their
most relevant finding for the current study is the probability that a city
will implement antismoking laws increases when the closest larger city
has implemented a similar law. This finding adds support to the idea
that a neighboring government can influence the policy enactment of
another government. Shipan and Volden’s findings regarding policy
diffusion on the local level will be applied to the state level in the
present study, as this study predicts that neighboring states with
enacted paid family and medical leave policies will influence similar
policy enactments by other states.

In addition to this work by Shipan and Volden, Nicholson-
Crotty adds to the array of policy diffusion research through an
examination of the politics of diffusion and temporal diffusion patterns.
He examines the politics of diffusion using data from 57 policies
between 1969 and 2006 and multivariate analysis, finding that the
saliency and complexity of a policy can predict its diffusion rate, and
high-salience low-complexity policies diffuse quicker than other types
of policies. Nicholson-Crotty’s findings regarding temporal diffusion
patterns are important to the current research study because it creates a
framework for understanding the temporal characteristics of the
diffusion of paid family and medical leave policies in the American
states.

These studies are important to the fundamental literature of
policy diffusion theory, but policy diffusion literature has not yet
touched paid family and medical leave policy research. Thus, it is
important to utilize literature that has examined family and medical
leave policies with different foci throughout the years. Such literature
can aid in a broader understanding of these policies when it is applied
to policy diffusion theory literature, which is the goal of this study.

7 Ibid.
8 Ibid.
9 Ibid.
10 Sean Nicholson-Crotty, "The Politics of Diffusion: Public Policy in the
One important piece of literature has focused on cross-national examinations of family and medical leave policies. Kittilson examines the effects of women’s representation in elected offices on family leave policy across democracies from 1970 to 2000. The author uses a cross-national, cross-temporal analysis and she creates a pool-stacked database for the democracies. Kittilson uses two statistical models, Event History Analysis and time-series cross-sectional; her findings indicate that women’s representation influences the adoption and depth of implemented family leave laws. Additionally, Kittilson finds that women’s representation is more significant than party composition. Kittilson’s research is relevant to the current study because it adds support to the importance of women’s representation in crafting paid family and medical leave policies, which is examined in this study.

Barrilleaux, Holbrook, and Langer examine political parties and electoral competition in relation to policymaking in the American states. The authors use cross-sectional state level data from 1973 to 1992 and they apply ordinary least squares in their analysis. They note the debate about Democratic majorities’ influence on the passing of liberal policies and conclude that electoral competition is an important factor in the passing of liberal policies. This relates to the current study because it is predicted that a certain party composition—a Democratic majority, in this examination—of state legislatures will impact the likelihood that paid family and medical leave laws will exist in the states. However, Barrilleaux, Holbrook, and Langer focus on the impact of electoral competition on the passing of liberal policies by Democratic majorities, which is not examined in the present study. Nevertheless, Barrilleaux, Holbrook, and Langer’s research sets a foundational base

12 Ibid.
13 Ibid.
14 Ibid.
16 Ibid.
for understanding the impact of party composition in state legislatures on policymaking.

State economic factors, like annual per capita real gross domestic product, are considerations for their effects on policies such as paid family and medical leave policy. While there is a lack of quantitative research on the effects of annual per capita real gross domestic product in American states on the implementation of paid family and medical leave policies, research from Victor R. Fuchs shows a link between gross domestic product and health care spending in the United States using data from the Centers for Medicare & Medicaid Services. Fuchs found support for such a relationship in an examination of national gross domestic product and national health care expenditures between 1950 and 2010. Fuchs writes that the gross domestic product grew at about 2 percent each year while health care spending grew at about 4.4 percent each year between the years of 1950 and 2011. Fuchs notes that the correlation is not perfect, but the data shows a substantial relationship between the two; most sharp increases and decreases in gross domestic product are accompanied by parallel changes in health care spending. The relationship Fuchs found between gross domestic product and health care spending helps build a framework for the current research topic because it shows how economic growth can lead to health care spending. Paid family and medical leave policy is often grouped within the larger category of health policy. Fuchs’ examination shows that gross domestic product can influence health care expenditures, so it provides insight into why some states prioritize paid family and medical leave policies despite potential costs required of the state in implementing such policies.

While the research examinations of Kittilson, Barrilleaux, Holbrook, and Langer, and Fuchs are important to policy research for the field of family and medical leave policy, this policy area remains under-examined. This study seeks to fill in gaps in the literature by examining the likelihood of states’ enactment of paid family and

18 Ibid.
19 Ibid.
20 Ibid.
21 Ibid.
medical leave policies in the United States. This study combines policy diffusion literature (Shipan and Volden 2008) with literature on women’s representation (Kittilson 2008), party composition (Barrilleaux, Holbrook, and Langer 2002), and state gross domestic product (Fuchs 2013). Thus, the present research attempts to conduct a test of the influences of policy diffusion, women’s representation, state party composition, and state annual per capita real gross domestic product (in chained 2012 dollars) on paid family and medical leave policy enactment in the American states. This research is important for the broader body of literature regarding paid family and medical leave policies on the local, state, and national levels.

Predicting Influences on Likelihood of State Paid Family and Medical Leave Policy Enactment

Based on previous literature about policy diffusion (Shipan and Volden 2008), women’s representation (Kittilson 2008), party composition (Barrilleaux, Holbrook, and Langer 2002), and gross domestic product (Fuchs 2013), four hypotheses are formulated for analysis in the current study.

First, Shipan and Volden examine the influences of policy diffusion on antismoking laws on the local level in their 2008 study. They find that the probability that a city will implement antismoking laws increases when the closest larger city has implemented a similar law.22 Although this research focuses on the local level of policymaking, it contributes to the hypothesis that on the state level, states that neighbor other states that have already enacted paid family and medical leave laws are more likely to implement their own paid family and medical leave laws. Based on Shipan and Volden’s research, this study predicts that an increased number of neighboring states with enacted paid family and medical leave laws increases the likelihood of paid family and medical leave laws in the state.

Second, Kittilson’s examination of the impact of women’s representation on the adoption and depth of implemented family leave laws found that women’s representation in lawmaking bodies across nineteen democracies impacted paid family and medical leave laws.23 Kittilson’s research leads to a prediction that women’s representation in

23 Kittilson, “Representing Women,” 323-34.
American state legislatures will increase the presence of enacted paid family and medical leave laws in the states. Rooted in the findings of Kittilson's research, this study predicts that increased women's representation in state legislatures increases the likelihood of paid family and medical leave laws in the state. Third, Barrilleaux, Holbrook, and Langer examine political parties and electoral competition in policymaking in the American states. They find that a Democratic majority can influence the passing of liberal policies if electoral competition is present. These findings lead to the prediction that a Democratic majority in the state legislatures will increase the likelihood of paid family and medical leave laws in the state. Based on this research, this study predicts that a Democratic majority in the state legislature increases the likelihood of paid family and medical leave laws in the state. Fourth, Fuchs examines the relationship between national gross domestic product and national health care spending expenditures. The analysis shows that there is a significant relationship between the two. This examination leads to the prediction that increased state annual per capita real gross domestic product influences the likelihood of paid family and medical leave laws in the state. Based on Fuchs' examination, this study predicts that increased state annual per capita real gross domestic product (in chained 2012 dollars) increases the likelihood of paid family and medical leave laws in the state. Therefore, based on previous literature as discussed, the current research tests the following four hypotheses:

- \(H_1 \): An increased number of neighboring states with enacted paid family and medical leave laws increases the likelihood of paid family and medical leave laws in the state.
- \(H_2 \): Increased women’s representation in the state legislature increases the likelihood of paid family and medical leave laws in the state.
- \(H_3 \): A Democratic majority of state legislators in the state legislature increases the likelihood of paid family and medical leave laws in the state.
- \(H_4 \): Increased annual state per-capita real gross domestic product increases the likelihood of paid family and medical leave laws in the state.

These hypotheses will be tested with further data. In the following section, the specific data and methods for this test are elaborated.

Data and Measurements

In order to test the relevant hypotheses, data for one dependent variable and four independent variables are collected; all variables are operationalized. All fifty American states are included in analysis; analysis was clustered by state. State was operationalized as each state in the United States, measured as 1 through 50. The District of Columbia, which has enacted its own paid family and medical leave policy, is excluded from analysis as a result of missing data. Paid family and medical leave enactment for the year span of 2002 until 2017 is examined; the year 2002 is chosen because it is the first year a state (California) enacted a paid family and medical leave policy. Since data regarding state annual per capita gross domestic product for 2018 was not available at the time of data collection, the year 2017 is the most recent year for analysis.

The dependent variable, Presence of Paid Family and Medical Leave Policy, is measured as whether or not the state has implemented a paid family and medical leave policy in the state legislature. Data was collected from the National Partnership for Women & Families, which produced a report of states that have enacted paid family and medical leave policies. The data provides the years of policy enactment to supply this study with data for the years of 2002 to 2017. The data is operationalized as “0” or “1,” where “0” is equal to states that have not enacted paid family and medical leave laws and “1” is equal to states that have enacted paid family and medical leave laws. Any state that has any form of a paid family and medical leave law enacted by the state legislature is classified as a “1,” meaning that states may have policies that vary from one another but still fit the classification of paid family and medical leave policies according to the National Partnership

for Women & Families. This classification gives the data content validity because the source uses a standard to define whether or not a state has enacted a paid family and medical leave law. The theoretical minimum is zero and the theoretical maximum is one; the observed minimum is zero and the observed maximum is one. Reliability for this measure can be tested using the test-retest model, measuring the same observations throughout a time period. Table 1 shows the tabulation of the dependent variable. There are 704 observations of no paid family and medical leave policy enacted in the state and there are 96 observations of paid family and medical leave policy enacted in the state for all fifty states throughout the years of 2002 to 2017.

Table 1: Paid Family and Medical Leave Variable Tabulation

<table>
<thead>
<tr>
<th>Paid Family and Medical Leave Policy</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>704</td>
<td>88.00</td>
<td>88.00</td>
</tr>
<tr>
<td>1</td>
<td>96</td>
<td>12.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>800</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

The independent variables in this study are Neighboring State, Women’s Representation in the State Legislature, Democratic Majority in the State Legislature, and State Annual Per Capita Real Gross Domestic Product. The first independent variable, Neighboring State, measures the percentage of a given state’s bordering states that have enacted paid family and medical leave laws. Data for this continuous variable comes from the same source that provided data for the dependent variable, the National Partnership for Women & Families. The data is operationalized as the percentage of neighboring states that have enacted paid family and medical leave laws relative to a given state for the examined years. The theoretical minimum is zero percent and the theoretical maximum is 100 percent; the observed minimum is zero percent and the observed maximum is rounded to 66.67 percent. The observed mean is rounded to three percent. This data’s validity comes from the similarity of Shipan and Volden’s 2008 measure of policy diffusion using neighboring cities. This data’s reliability can be measured using the test-retest method in an examination of the observations over a time period.

The second independent variable, Women’s Representation in the State Legislature, measures the percentage of women holding
legislative office seats in state legislatures. Data for this variable comes from the Rutgers University Eagleton Institute of Politics Center for American Women and Politics. This source provided data for the percentage of women holding state legislature seats in all fifty state legislatures for 2002 to 2017. This data showed that the minimum percentage of women holding office in the examined states and years was 7.9 percent and the maximum was 42 percent, with the observed mean rounded to 23.8 percent. An analysis of the data regarding the percentages of women holding offices in the state legislatures showed an average of about 24 percent, meaning that for the states and years examined, women held roughly 24 percent of legislative seats in state legislatures on average. This data is then divided into two groups, creating a nominal variable: the first for data points less than or equal to the average of 24 percent (operationalized as “0”) and the second for data points of 24.1 percent or above (operationalized as “1”). The purpose of this grouping is to examine how lower-than or higher-than averages of women holding elected seats in the state legislatures affects paid family and medical leave policy enactment. This data has content validity, as the percentage of women holding seats in state legislatures demonstrates women’s representation in state legislatures. This measure’s reliability can be tested using the test-retest method, examining observations over time.

The third independent variable, Democratic Majority in the State Legislature, measures whether or not the state legislature is comprised of a Democratic majority. Data for this variable comes from the National Conference of State Legislatures. This source provided data for the state partisan compositions for all fifty state legislatures for the years of 2002 to 2017. The data is operationalized as “0,” “1,” “2,” or “3,” where “0” is equal to no Democratic majority in the state legislature, “1” is equal to a nonpartisan state legislature, “2” is equal to a split party composition in the state legislature, and “3” is equal to a Democratic majority in the state legislature. The observed minimum is zero and the observed maximum is three. This data has content validity, as the presence of a Democratic majority in the state legislature or the lack of a Democratic majority in the state legislature measures whether or not the state has a Democratic majority in the state legislature. Reliability for this measure can be tested using the test-retest method in an examination of Democratic majorities in the state legislatures over time.

The fourth independent variable, Gross Domestic Product, measures the annual per capita real gross domestic product by state in
chained 2012 dollars. Data for this variable comes from the Bureau of Economic Analysis of the U.S. Department of Commerce. This source provided data for annual per capita real gross domestic product in chained 2012 dollars for all fifty states for the years of 2002 to 2017. The theoretical minimum is zero and the theoretical maximum is unlimited. The observed minimum is $30,827 and the observed maximum is $79,894 (in chained 2012 dollars). This data has content validity as the annual per capita real gross domestic product for each state shows the value of all goods and services in the state’s economy. Reliability for this variable can be tested through the use of the test-retest method.

Findings and Discussion

The key focus of this empirical study is to identify influential factors of the likelihood of enactment of paid family and medical leave policies in the American states. A logistic regression analysis is performed to answer this research question.

A goodness of fit test shows that the logistic regression model is correctly classified at 88.62 percent. This means that 88.62 percent of the variance of the independent variables is correctly classified by the model. The log pseudolikelihood is -182.2937. One independent variable, Democratic Majority, is significant at the 99.9 percent level, and one independent variable, Gross Domestic Product, is significant at the 99 percent level, meaning that a Democratic majority in the state legislature and increased state annual per capita real gross domestic product are significant predictors of the likelihood of paid family and medical leave policy enactment in the American states. The logistic regression model supports two of the four hypotheses based on the significance of the independent variables Democratic Majority and Gross Domestic Product. Thus, the following alternative hypotheses are accepted and the null hypotheses are rejected:

H_3: A Democratic majority of state legislators in the state legislature increases the likelihood of paid family and medical leave laws in the state.

H_4: Increased annual state per capita real gross domestic product increases the likelihood of paid family and medical leave laws in the state.

Since the independent variable, Democratic Majority, is considered significant in the logistic regression model, a margins test further explains its impact. The marginal effects show that states with a Democratic majority in the legislature have about a 27 percent chance of enacting a paid family and medical leave policy. Additionally, states with a legislature that is split along party lines have about an 11 percent
chance of enacting a paid family and medical leave policy. The results of this margins test demonstrate the nature and role of partisanship in American state legislatures. When the state legislature’s composition is split along party lines, the chances of paid family and medical leave policy enactment is only about 11 percent, whereas when one party dominates the legislature (the Democratic Party, in this case), likelihood of enactment more than doubles. Tendencies toward partisanship are evident in today’s political environment, and these results indicate that partisanship in state legislatures can influence paid family and medical leave policy enactment. The results of the logistic regression test and the marginal effects test show that legislatures with Democratic majorities are significantly more likely to pass paid family and medical leave policies. If the party compositions of state legislatures are continually split along party lines in the future, there is a smaller likelihood of paid family and medical leave policy enactment by the states compared to when there is a Democratic majority in the legislature. The margins test for this independent variable is important for building a further understanding of its significance in predicting the likelihood of a state’s enactment of paid family and medical leave policies.

Analysis also showed that increased state annual per capita real gross domestic product influences the likelihood of paid family and medical leave policy enactment. Similar to the variable Democratic Majority, a margins test for Gross Domestic Product further explains its significance. The marginal effects show that when a state’s annual per capita real gross domestic product is between $40,000 to $50,000 (in chained 2012 dollars), there is about an 8.8 percent chance of paid family and medical leave policy enactment. When a state’s annual per capita real gross domestic product is between $50,001 and $60,000 (in chained 2012 dollars), the likelihood of enactment increases to about 21 percent. When a state’s annual per capita real gross domestic product is between $60,0001 and $70,000 (in chained 2012 dollars), the likelihood of enactment increases to about 37 percent. Finally, when a state’s annual per capita real gross domestic product is between $70,0001 and $80,000 (in chained 2012 dollars), the likelihood of enactment is about 50 percent. The results of the margins test further support the key finding that increased state annual per capita real gross domestic product increases the likelihood of paid family and medical leave policy enactment. As state annual per capita real gross domestic product increases, likelihood of enactment increases. These results
emphasize the importance of state economic factors, such as gross domestic product, on state policymaking.

Table 2: Determinants of Paid Family and Medical Leave Policy Enactment Likelihood for 2002 to 2017, Clustered by State

| Model 1 |
|------------------------|------------------|
| **Independent Variables** | |
| Neighboring State | -.0399 (.0383) |
| Women’s Representation | -.6634 (.7781) |
| Democratic Majority | 1.8311 (.5009)** |
| Gross Domestic Product | .0001 (.0000)** |

Constant	-12.8892 (3.0981)
N	800
Log Pseudolikelihood	-182.2937
Correctly Classified	88.62%

***p<.001, **p<.01, *p<.05

Table 3: Marginal Results for Democratic Majority

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimated Effect</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democratic Majority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split Party Composition in the State Legislature</td>
<td>11% (.073)</td>
<td>-.030 - .258</td>
</tr>
<tr>
<td>Democratic Majority in the State Legislature</td>
<td>27% (.084)**</td>
<td>1.079 - .4355</td>
</tr>
</tbody>
</table>

***p<.001, **p<.01, *p<.05

Table 4: Marginal Results for Gross Domestic Product (in Chained 2012 Dollars)
The significance of the independent variable, Democratic Majority, supports previous literature by Barrilleaux, Holbrook, and Langer, which examined political parties and electoral competition in relation to policymaking in the American state legislatures. One of their findings suggests that electoral composition is an important factor in the passing of liberal policies. The results of the current study support this finding, as a Democratic majority in the state legislature is a significant predictor of the likelihood of paid family and medical leave policy enactment in the American states.

The significance of state annual per capita real gross domestic product supports prior literature by Fuchs, which examined the relationship between gross domestic product and national health care expenditures. Fuchs finds that typically, a change in gross domestic product has a parallel movement in health care spending. This finding

correlates to the finding of the current study that increased state annual per capita real gross domestic product increases the likelihood of paid family and medical leave policy enactment. When gross domestic product is higher, the likelihood of paid family and medical leave policy enactment increases. Paid family and medical leave policy, which is often grouped under a larger category of health care policy, is positively correlated to state annual per capita real gross domestic product. Thus, the results of the current study support Fuchs’ findings about the relationship between gross domestic product and health care expenditures.

The remaining two variables, Neighboring State and Women’s Representation, are not significant predictors of the likelihood of paid family and medical leave policy enactment in the American states. The insignificance of these variables proves to be at odds with previous literature from Shipan and Volden’s 2008 examination and Kittilson’s study. Shipan and Volden’s policy diffusion research contributed to the hypothesis that a state’s likelihood of paid family and medical leave policy enactment would be influenced by a neighboring state’s enactment or lack of enactment of a similar policy. The results of the current study, however, suggest that policy diffusion is not influential in paid family and medical leave policy enactment likelihood. This contradicts the theory of policy diffusion. However, it is important to note that Shipan and Volden focus on antismoking policies enacted by city governments and the policy diffusion to other city governments, while the present study examines state policymaking. This may or may not account for the difference in results. Regardless, the question remains, does policy diffusion apply in certain policy areas, such as anti-smoking laws in Shipan and Volden’s 2008 study, but not others, such as paid family and medical leave policy? Policy diffusion theory at large should not be discounted by the results of the research, but a further explanation of the lack of policy diffusion significance on paid family and medical leave policy enactment likelihood in the American states, as identified by this study, is necessary.

Kittilson’s literature on women’s representation in legislatures also is not supported by the results of the present study. Kittilson found that women’s representation influences the adoption and the depth of family leave policies.29 Furthermore, Kittilson finds that women’s

29 Kittilson, “Representing Women: The Adoption of Family Leave in Comparative Perspective,” 323-34.
representation is more significant than party composition, which contradicts the findings of the current study, which show party composition to be significant and women’s representation to be insignificant.30 Since none of the variables were highly correlated, it is unlikely that multicollinearity is responsible for the conflicting results. However, three potential reasons for the difference in results exist. First, Kittilson focuses on maternity and childcare leave, while the present study focuses specifically on paid family and medical leave. The policies that Kittilson studies vary slightly from the policies that are commonly enacted in the American states regarding paid family and medical leave. Kittilson, therefore, is examining slightly different policies, which may account for the differences in results. Second, Kittilson examines policy enactment by democracies at large using a cross-national analysis, while the present study focuses on state-level policy enactment. The varying levels of analysis may influence the differing results. Third, Kittilson examines a different time range (1970 to 2000) than the current study (2002 to 2017). The differing time ranges in the two studies could account for the conflicting results, as well. These potential explanations may help explain the varying results; regardless, the present study finds that women’s representation in American state legislatures is not a significant predictor of paid family and medical leave policy enactment likelihood.

The findings at large show that a Democratic majority in the state legislature and increased state annual per capita real gross domestic product are significant predictors of the likelihood of paid family and medical leave policy enactment by states. These results are significant for the field of paid family and medical leave policy research, as they contribute to a framework for understanding why some American states have enacted paid family and medical leave policies. However, the present study is limited by a number of factors. A lack of available data for some potential independent variables such as public opinion by state did not allow for analysis. If data is made available, further research should attempt to examine the significance of public opinion on paid family and medical leave policy enactment likelihood. The present study is also limited by the small number of states that have enacted paid family and medical leave policies; more states with enacted policies would allow for stronger analysis because of additional data. If more states enact paid family and medical leave

30 Ibid.
policies in the coming years, researchers should attempt to answer the same question in the future for a more complete understanding of paid family and medical leave policy enactment likelihood in the American states. Future research may also consider running a rare events model on the data, since the instance of a state’s enactment of paid family and medical leave policy can be considered a rare event, as this study showed that for all fifty states for 2002 to 2017, there were only 96 observations of paid family and medical leave policy enacted by a state (compared to 704 observations of no such policy enacted). Other future examinations should look at policy diffusion and women’s representation in an attempt to understand why, despite previous literature, these variables were not significant influences in the likelihood of paid family and medical leave policy enactment in the American states.

Conclusion

Paid family and medical leave policy debate remains a topical policy debate in American politics today. With the lack of a federal policy that guarantees paid family and medical leave for Americans, a number of states have enacted their own versions of such a policy. To explain the likelihood of such policy enactment in the states, the current study examined policy diffusion, women’s representation, party composition, and state annual per capita real gross domestic product. The key findings are a Democratic majority in the state legislature and increased state annual gross domestic product are significant predictors of the likelihood of paid family and medical leave policy enactment by the state. Further examination of the party composition finding showed the prevalence of partisanship in American state legislatures and the influence it has on paid family and medical leave policy enactment likelihood. This study contributes to the broader genre of literature because it provides support for two predictors of paid family and medical leave policy enactment in the American states, deepening our understanding of policymaking in this policy area. Further research that examines other variables, such as public opinion, would benefit the research topic, and a test of the data using a rare events model may be beneficial. Another attempt at analysis may benefit the research topic once more states have enacted paid family and medical leave policies. Finally, further research can examine policy diffusion and women’s representation in their lack of significance in the likelihood of paid family and medical leave policy enactment in the states, as determined
by this study. Through the current and future studies, scholars can better understand paid family and medical leave policy enactment in the American states and the state policy-making process at large.
Appendices

Appendix 1: Summary Statistics of Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paid Family and Medical Leave Policy</td>
<td>800</td>
<td>.12</td>
<td>.3251648</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>State</td>
<td>800</td>
<td>25.5</td>
<td>14.4399</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Neighboring State</td>
<td>800</td>
<td>2.564538</td>
<td>7.635966</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Women’s Representation</td>
<td>800</td>
<td>.47125</td>
<td>.499485</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Democratic Majority</td>
<td>800</td>
<td>1.46</td>
<td>1.365918</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Gross Domestic Product</td>
<td>800</td>
<td>49,576.69</td>
<td>9,523.834</td>
<td>30,827</td>
<td>79,894</td>
</tr>
</tbody>
</table>
Appendix 2: Correlation Results Among Variables

<table>
<thead>
<tr>
<th>Paid Family and Medical Leave Policy</th>
<th>State</th>
<th>Neighboring State</th>
<th>Women’s Representation</th>
<th>Democratic Majority</th>
<th>Gross Domestic Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paid Family and Medical Leave Policy</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>.0896</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighboring State</td>
<td>.0103</td>
<td>-</td>
<td>.1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>.0360</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women’s Representation</td>
<td>.1908</td>
<td>-</td>
<td>.2411</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>.2491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Democratic Majority</td>
<td>.3687</td>
<td>-</td>
<td>.1185</td>
<td>.3625</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.1299</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Domestic Product</td>
<td>.3469</td>
<td>-</td>
<td>.1303</td>
<td>.2201</td>
<td>.1684</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.0635</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Codebook

Dependent Variable

<table>
<thead>
<tr>
<th>Paid Family and Medical Leave Policy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = No Paid Family and Medical Leave Policy Enacted in the State</td>
<td></td>
</tr>
<tr>
<td>1 = Paid Family and Medical Leave Policy Enacted in the State</td>
<td></td>
</tr>
</tbody>
</table>

Independent Variables

<table>
<thead>
<tr>
<th>Neighboring State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible Range: 0% - 100%</td>
<td></td>
</tr>
<tr>
<td>Observed Range: 0% - ~66.67%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Women’s Representation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = State Legislature has 24 percent or less female legislators</td>
<td></td>
</tr>
<tr>
<td>1 = State Legislature has 24.1 percent or more female legislators</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Democratic Majority</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = No Democratic Majority in the State Legislature</td>
<td></td>
</tr>
<tr>
<td>1 = Nonpartisan Legislature</td>
<td></td>
</tr>
<tr>
<td>2 = State Legislature Split Along Party Lines</td>
<td></td>
</tr>
<tr>
<td>3 = Democratic Majority in the State Legislature</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gross Domestic Product (in Chained 2012 Dollars)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible Range: 0 - infinity</td>
<td></td>
</tr>
<tr>
<td>Observed Range: $30,827 – $79,894</td>
<td></td>
</tr>
</tbody>
</table>
Bibliography

