Sodium Iodide Radiographic Contrast To Distinguish Between Non- and Cavitated Carious Lesions

Taylor G. Wilkinson, Sonia M.S. Rocha-Sanchez, Martha E. Nunn, and Douglas K. Benn
Creighton University Medical Center • Department of Oral Biology • School of Dentistry • Omaha, NE 68178 USA

ABSTRACT

Background In managing dental caries, the ability to distinguish between non-cavitated and cavitated lesions is crucial since the former can be treated by non-surgical methods. Interproximal caries relies mostly on radiographic assessment and current methods are unable to distinguish between non-cavitated and cavitated lesions. Objectives To determine by an in vitro pilot study if a concentrated aqueous solution of sodium iodide applied topically to the interproximal surfaces of extracted teeth can discriminate radiographically between non-cavitated and cavitated natural carious lesions. Methods and Materials Human pre-molars extracted teeth stored in thymol were selected, 12 sound, cavitated, and non-cavitated white spot lesion surfaces were used for the experiment. Control exposures were made using a Digital X-ray machine with a digital intraoral sensor. A 9 molar solution of sodium iodide (NaI) in distilled water was made and placed on the interproximal surfaces of the test teeth. Teeth were radiographed and two authors read the images for the presence or absence of opaque radiopacities. Conclusion Results indicate that a concentrated solution of NaI quickly produces a radiopaque region in cavitated but not in non-cavitated or sound teeth. Further testing is in progress.

INTRODUCTION

In managing dental caries, the ability to distinguish between non-cavitated and cavitated lesions is crucial since the former can be treated by non-surgical methods. Interproximal caries relies mostly on radiographic assessment and current methods are unable to distinguish between non-cavitated and cavitated lesions.

METHODS & MATERIALS

Human premolar extracted teeth stored in thymol were selected, 12 sound, cavitated, and non-cavitated white spot lesion surfaces were used for the experiment. Control exposures were made using a Digital X-ray machine with a digital intraoral sensor. A 9 molar solution of sodium iodide (NaI) in distilled water was made and placed on the interproximal surfaces of the experimental teeth. Teeth were radiographed and two authors read the images for the presence or absence of opaque regions after NaI application compared to controls. The non-decalcified teeth were sectioned using a diamond saw and photographed dry. Presence of caries determined visually.

RESULTS

12 sound surfaces and 12 non-cavitated lesions did not show any radiopacities compared to the controls.

11 of 12 cavitated lesions showed radiopacities.

1 very small cavitated lesion had no radiopacitly – approximately 50 microns.

5 cavities were 0.24 – 0.85 mm diameter opening. 7 cavities were greater than 1.00 mm.

CONCLUSIONS

Concentrated NaI as a radiographic contrast agent can produce radiopacities in small cavitated interproximal caries. NaI does not opacify sound or non-cavitated lesions. The in vitro contrast accuracy was 97% vs 56% in vivo. A method for distinguishing non-cavitated from cavitated caries lesions seems possible.

ACKNOWLEDGEMENTS

A special thanks to Dr. Barkmeier, Dr. Barrett, and Dr. O’Meara for their support and advice. Thanks to the Department of Oral Biology of Creighton University School of Dentistry for the financial support of this study.