Date: May 13, 2014

Robert Dornsife, Ph.D., Chair

Robert D. Whipple, Jr., Ph.D.

Faith Kurtyka, Ph.D.

Gail M. Jensen, Ph.D., Dean
PRESS START TO PLAY
INTERACTIVITY IN THE VIDEO GAME MEDIUM

By
BYRON GILMAN

A THESIS

Submitted to the faculty of the Graduate School of the Creighton University in Partial Fulfillment of the Requirements for the degree of Master of Arts in the Department of English

Omaha, NE
May 15, 2014
Abstract

What sets the video game apart from other media is its level of interactivity. I propose a model for understanding video games as two interacting areas, the genotype, or the unchanging computer code, and the phenotype, the expression of that code. In the interplay between the two, a game reveals itself as one of Espen Aarseth’s cybertexts, where the act of playing the game forms the narrative of the game. By this, playing the video game is a process of collapsing the potential coded into the genotype into a single, linear experience called a “playthrough.” In making this, the player serves as both an actor and observer, witnessing their actions through their avatar, from a removed perspective as the player. Video game narratives, then, are defined by how their interactivity enables each individual player to shape a personal, unique narrative formed by their gameplay experience. But the significance to this interactivity can be most clearly seen where it is absent. In various forms, such as competitive games casting or Let’s Play, where the interactivity is removed and the playthrough is presented as video to the viewer, the need for a supplement, usually through commentary, shows the significance this interactivity has, and how video games can be remediated in a unique way.
ACKNOWLEDGMENTS

This paper could not have been done without the help of more people than I have space to name. Alongside my three advisers, Dr. Dornsife, Dr. Kurtyka, and Dr. Whipple, I also have to thank Dr. Prenosil, who gave me leads on the project and lent me books on the subject, and Dr. Zacharias, whose class first sparked my interest in this subject. I would also thank my parents, Barb and Howard Gilman, for their loving support throughout the process of pursuing my Masters. Above all, I am grateful for the tireless support and assistance of Karisa Hernandez, without which, this paper would not have been possible.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>What Makes a Game?</td>
<td></td>
</tr>
<tr>
<td>The Genotype</td>
<td>4</td>
</tr>
<tr>
<td>The Phenotype</td>
<td>5</td>
</tr>
<tr>
<td>The Avatar and the Interface</td>
<td>8</td>
</tr>
<tr>
<td>Ergodicity of a Game</td>
<td>14</td>
</tr>
<tr>
<td>Expressions of Code</td>
<td>19</td>
</tr>
<tr>
<td>Gameplay</td>
<td>30</td>
</tr>
<tr>
<td>The Spect-Actor</td>
<td>31</td>
</tr>
<tr>
<td>Collapse</td>
<td>37</td>
</tr>
<tr>
<td>Narrative</td>
<td>42</td>
</tr>
<tr>
<td>Genre</td>
<td>48</td>
</tr>
<tr>
<td>Press Start to Play!</td>
<td>51</td>
</tr>
<tr>
<td>Observing the Game</td>
<td>56</td>
</tr>
<tr>
<td>The Observation of Games</td>
<td>58</td>
</tr>
<tr>
<td>Casting</td>
<td>62</td>
</tr>
<tr>
<td>Let’s Play</td>
<td>70</td>
</tr>
<tr>
<td>The Let’s Play Community</td>
<td>74</td>
</tr>
<tr>
<td>Conclusion</td>
<td>82</td>
</tr>
<tr>
<td>Works Cited</td>
<td>84</td>
</tr>
<tr>
<td>Games Cited</td>
<td>92</td>
</tr>
<tr>
<td>Images</td>
<td>94</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>“World of Warcraft: Interface”</td>
<td>18</td>
</tr>
<tr>
<td>“Cookie Clicker: Interface”</td>
<td>27</td>
</tr>
<tr>
<td>“Zelda Ocarina of Time – Door of Time Skip”</td>
<td>45</td>
</tr>
<tr>
<td>“Super Mario 64”</td>
<td>53</td>
</tr>
<tr>
<td>“2013 DOTA 2 International”</td>
<td>65</td>
</tr>
<tr>
<td>“Super Metroid: SPEED RUN (4-Way Race) (0:45:51) #AGDQ”</td>
<td>73</td>
</tr>
<tr>
<td>“A Funny Montage”</td>
<td>78</td>
</tr>
</tbody>
</table>
“The form of a game is of first importance”

-Marshall McLuhan, Understanding Media, Location 3452

Video games, as a medium, do not enjoy a privileged place in the critical consciousness. It is a younger medium than film and a much younger medium than literature, but it has been around for decades, while not having much analysis as an art form, or even acknowledgement of the potential that it might ever be considered art. Not unsurprising, as per McLuhan’s statement that “each new technology creates an environment that is itself regarded as corrupt and degrading. Yet the new one turns its predecessor into an art form” (Loc 102). I have no interest in rehashing old debates, but I see that video games not only have the potential for artistic expression, but have already been expressing that potential, and that the critical groundwork has already been laid to look at games as art. What I see as key to exploring and discussing the medium comes from the unique structure of the video game experience, discovering the “what” and “how” of games rather than focusing on content, such as the intellectual property of the game. Reviewing and discussing games that looks for the common elements across playthroughs of the game, elements such as the game’s graphics or plot, rather than the player’s experience of the gameplay, ignores what is arguably the most significant element to a game, and mistakes the strengths of the medium. I see promising opportunities.

I believe that the importance of a video game comes from its interactivity, and that the way games are currently written about excessively emphasizes the objectively present, non-interactive elements of a game. Looking at the divide
between the potential expression contained in the game’s code and the many ways that code can be actually expressed, as well as the interplay between the two, shows how much games are defined by what you can and cannot do. To prove this, this paper follows something similar to a chronological organization. At first, there exists the code of the game, the objective, physically existing elements such as the art and music assets or the programming that handles inputs and outputs, which exist in potential. I see a clear similarity here between computer and genetic code in video games, as it exists in the unexpressed list of code, as a genotype, and the expressed phenotype. Such a measure permits an understanding of glitches and other unintended approaches to the game’s potential that come from the computer blindly enacting coding. In the phenotype exists the interface and avatar, the means by which the player interacts with the phenotype of the game to make the game as an ergodic text, where the player’s actions decide how the medium is experienced. Then, I intend to launch an examination into the gameplay of a game. The player, then, engages the game by playing it, collapsing that potential into a single, linear playthrough, via actions taken, understood as both inputs through the hardware or the actions of the player avatar in the game. The game collapsed is then the individually unique experience of the game, creating one of Espen Aarseth’s cybertexts, where “the reader is (or at least produces) the story” (Cybertext, 112). This playthrough is what is left from that collapse, forming the text of the game. Playthroughs differ from player to player and genre to genre, and are a key part of forming the narrative of the game experience. The final step, then, is the subject of any discussion of a video game, the means by which an observer can experience that
linear playthrough without playing the games. Some means of remediating games, such as e-sports casting, draw from the influences of sportscasting, making use of color commentary and giving a stream of information for the viewer’s consumption. Others, such as Let’s Play, which Thomas Hale, in “From Jackasses to Superstars: A Case for the Study of ‘Let’s Play,’” describes as “a method by which videogame players record themselves commenting on gameplay for an online audience,” (3) are a fairly novel means of engagement, trying to bring the observer to an immediacy with the game through the commentary of players, with different communities looking for different elements in what makes a good LP. I believe these means of covering the subject reveal the unique character of video game media, a character that emphasizes the individual experience, exploration, and choice. I believe that these forms of remediation, rather than old attempts based on methods to translate non-ergodic texts, provide a much better means of understanding what a game is about and engaging it without playing.
What Makes A Game?

There is always a physical component to a medium. A film has a filmstrip, a book has ink on paper, and even speech has the compression of air into sonic waves. Video games, as digital media, are built from their code, either imprinted on a physical medium, such as a CD or a cartridge, or directly transferred electronically to the computer/console. Bogost, in “The Phenomenology of Video Games” explains how the earliest games relied on kinetic action for their code, such as with a metal pinball striking a switch to complete a circuit to turn on lights or operate the score counter (38), but most modern games are exclusively electronic in their inner workings, frequently to the exclusion of any physically-purchased hardware other than the system operating the game. This is significant, as it is the extent of what is created by the authorship of the game, and while the author of a game has less control over the end product compared to other media, it is undeniably present throughout the game experience. It is also the space that exists before gameplay begins. The code and the expression of the code makes up the canvas on which the player acts, the potential that is collapsed in the act of playing, and the common ground between any two players’ experiences. It is the potential, whether extraordinarily broad or only permitting a few deviations, from which a player’s gameplay experience is formed.

Espen Aarseth's *Cybertext* presents an outline of the information flow and ideal components in a “Generalized, Role-Playing Game,” particularly the interaction between the User, on the far right, and the Database on the far left, with the
Processing and Representing Engines mediating information between the two (104). While it is a good model for the internal, programmatic function of a video game, in terms of practical use, dividing the various engines, databases, and assets isn’t necessary. It’s accurate more to the internal workings of the digital processes, rather than the player’s experience of those elements. Instead, I see a simpler divide between code, interface, and player, streamlining the model and emphasizing the specific divide between the visible and invisible elements of a video game. The genotype, which is made up by the code of the game, is never encountered in play. The phenotype, made up by the items and events expressed of the code, is what the player actually encounters in play. From these elements, a view of gaming that looks at the noninteractable and the potentially interactable elements of a game can be formed.

The Genotype

In looking at a video game, I start with the part that cannot be seen. The underlying makeup of a game reveals the way games exist in potential, and how they are formed with that potential in mind. In genetics, the terms “genotype” and “phenotype” are used to differentiate between the presence of a gene and the expression of a gene. Two people might both carry the genetic data for, say, blue eyes, but because of other genetic factors, only one of the two has such an eye color. Computer code, like genetic code, functions in much the same fashion. There are some differences—most all computer code is space-compact and deliberately functional, unlike the large quantity of useless gene sequences, but both execute
their activated code’s function in roughly the same fashion. The genotype of a game is the objectively present lines of code that can be read, which can be viewed as text. These rules are always fixed; the only elements that can emerge are the elements that come directly from the code. Annmarie Powell’s “Get in the Game: Encouraging Play and Game Creation to Develop New Literacies in the Library” describes the differences children noticed between a real-life and video game version of a “Protect-the-Square” type game, where the video game could only act (and the player could only act) within the specifics of the rules, while in life, “frequently allowed players to make up their own rules, providing that they were not unfair to the opposing team” (845). As a result of the more predictable rule set and outcomes, the children were able to be more experimental in their suggestions for new options in the game. As the children also discovered, the rules are changeable, but never affected while within the game. Changes to the video game genotype, mostly made through the form of “mods,” downloadable, usually third-party add-ons to the game, permit the player to affect the genotype, but while playing, the player never interacts with the genotype. The code remains constant throughout a playthrough of the game, there are no buttons that change it, and fortunately so—altering the coding of a game can easily cause errors in functionality, such as glitches, but also possibly even unresolvable errors, leaving the game unplayable.

Some games have a 1:1 relationship between inputs and outputs, that is, an input will always produce the same, predictable output from the code. This is more common in simpler games, where there is less of an element of randomness that needs to be calculated. A game such as Angry Birds will process, assuming constant
conditions, recreate the same output from identical inputs. A game like *Solitaire*\(^1\) or *Minesweeper* will play identically per move, either red Queen will match either black King, or to the Jack of the matching suit, but have a different, randomized initial set-up. The deck is shuffled and the placements of the mines are scattered, both adding a degree of “randomness” to keep the game from becoming repetitive. True randomness, however, is a very difficult thing to acquire, so for most calculations, pseudo-randomness is used instead\(^2\). The mathematicians T. E. Hull and A. R. Dobell engaged the question of achieving randomness through computers in their article “Random Number Generators.” Hull and Dobell created the linear-congruential generator method, while it is one of many options for generating a sequence of random numbers; I chose it specifically to highlight the basic process of pseudo-random number generation. LCG makes use of a four-integer equation that creates a sequence of numbers. The sequence “is completely determined in advance,” from the “seed,” the numbers entered into the equation, but the “It turns out rather surprisingly that the statistical behavior of our sequences is good, with only a few exceptions, as long as they do not repeat too soon” (232). In a more complicated game, with code trying to simulate real decision-making (Artificial Intelligence/AI)

\(^1\) Games like Solitaire, that is, card games, demonstrate the seriousness of producing random results, either through random number generation (for electronic gaming) or shuffling cards (for the physical game). Any hypothetical Vegas Casino is very interested in ensuring the randomness of a deck of cards, and so is the Nevada Gaming Commission. NRS 465.085 asserts it is unlawful to take any action on a deck that “alters the normal criteria of random selection, which affects the operation of a game or which determines the outcome of a game.” Both for electronic and analog gaming, ensuring randomness is very important, for fear of a category B felony conviction (NRS 465.088)!

\(^2\) As the focus of this paper is on the general use of “random” rather than any cryptographical sense, when “random” is used, I mean “pseudo-random” instead of “true randomness.”
the inherent randomness that comes with real-life actions, or just to add challenge to the game by making things less predictable, the RNG becomes more important to the game. Such games can re-seed their RNG based on player input, which can be manipulated, but such an effort generally requires more technical ability than the average human has\(^3\). The important thing is that code is not intelligent; it can only execute what it has been programmed to execute, and the RNG is no exception. The ability to add randomness to the game is a vital element of how the genotype permits such an enormous variety of potential expressions.

The Phenotype

What the player interacts with is the expression of that code, the phenotype, which makes up art and sound assets as well as invisible elements, such as the game space, the rules of the game world, and the potential and activated triggers that are activated to activate other elements (e.g. the launching of a sound effect when two objects collide). The distinction between genotype and phenotype, the fixed and entirely preprogrammed, and the space that can be shaped, and the interplay between the two, reveals the extent and limitations of the player's interactivity. I do note that some instances may seem less visible to the player, such as the display model (the graphics) of an area and the world model (the physics, the boundaries that prohibit two objects from passing, or “clipping” through each other) are both part of the phenotype. Even though it is not visibly present in the game, the world model is part of what the player interacts with. Even a game without traditionally recognized

\(^3\) A Tool-Assisted Speedrun, which will be discussed later, makes use of a computer program that can anticipate and compute the necessary inputs to “game” the RNG.
“graphics,” such as a game that is entirely done in text prompts, such as Zork, the phenotype is made of the text. The phenotype is only encountered in play, only by the player, and never by the game’s designer. While the designers of the game certainly experience the phenotype through QA and other testing, they cannot directly put in object in that expression. Christensen’s “Recursive Patterns, or the Garden of Forking Paths” explores how a simple code based on generating lines in response to an algorithm on line density can automatically produce unique drawings, “In one sense, they were ‘created’ by a computer program and, subject to previous claims, ‘discovered by the author’” (177).

This puts the question of authorship of a game in an interesting place. Certainly, the data on the disk is the product of the studio that created it, but the specific permutations are less written and more discovered. At the same time, the controversy behind Grand Theft Auto: San Andreas’ “Hot Coffee Mod” engages this question. While the offending minigame was inaccessible to the phenotype in general play, it was still contained within the disk. A downloadable mod unlocked the code, making it accessible. Only through extraordinary measures, out-of-game tampering with the genetics of the game was it possible to access those scenes. However, the controversy was enough that “Within weeks, the game had been reclassified for adults only, removed from many stores on three continents, and then repaired by a software patch distributed by the manufacturer” (Bainbridge and Bainbridge 71). Rockstar Games’ (the studio behind Grand Theft Auto) patch to deactivate the ability for the code to be activated is still available online (http://www.nomorehotcoffee.com/). The absurdity of a downloadable mod to
prevent an outcome that can only be achieved via downloading another mod makes
evident that, at least in blame, the studio can claim a degree of authorship over the
expression of the code. The phenotype, however, is still generalized. There are
concrete elements—the player will always pass by a start-up screen, for instance, or
a video will always load the exact same way with the same triggers, but what
character model is created from the character generator, what order and time the
player activates certain triggers, how the player approaches, or even solves certain
challenges etc. is still subject to variables of the player’s influence. What exists here
in potential is still universal, and has yet to be collapsed to the individual gameplay
experience.

I’d like to return to the RNG to demonstrate how, even when the game seems
to be revealing its genotype to the player the player still never observes the actual
code in play. In the phenotype, some games give a suggestion of the calculations
behind actions, and percentages are sometimes shown as a representation of these
calculations. Occasionally, the game will give some representation of this
randomness, such as Mario Party’s use of spinning dice blocks, but these aren’t
physics objects in the game, just graphical representation of “randomness” as an
aesthetic. The RNG is particularly visible in the Turn-Based Strategy genre of games,
where players control multiple units on a battlefield, trading turns with a human or
AI opponent⁴. As an abstraction of combat, a Turn-Based Strategy needs to put

⁴ Much like Chess, which relies on specific movement rules for each piece to limit a
pieces ability to always succeed. A pawn must capture diagonally, but that was an
arbitrary limitation to simulate the challenge of lining up an attack that’s become its
own thing. The other end of the spectrum would be a First Person Shooter, where
limitations and complexities on a piece’s ability to remove others from the board. To do that, such games often rely on “chance to hit” calculations. Statistician Neil Brown writes a blog, *The Sinepost* that covers the use of mathematics in game programming. In his article, “Probability in Games: XCOM,” about the strategy game *XCOM: Enemy Unknown* use of giving statistics on whether a shot will hit, “when it misses, you can exclaim stupid things like 'My 85% shot missed! What’s the chances of that!' (Spoiler: 15%).” The phenotype here is honest and accurate, despite what the Gambler’s Fallacy might assert, about the chances, however, this is still only a graphical representation of a complicated, computed process.

However, at *Serenes Forest*, a webpage created by fans of the series *Fire Emblem*, another Turn-Based Strategy game where the player controls fantasy units (knights, wizards, archers, etc.) in grid-based battles fought over turns, players noticed an oddity in how the game calculated probability. The game, before confirming the selection to have one unit attack another, would display the expected damage from the attack, and the probability of the attack hitting and the chance of a “critical” (3 times expected damage) hit expressed as a percentage. While the probability is expressed as a percentage, the calculation of the percentage is actually achieved by the game generating two random numbers, averaging them, and seeing if it is lower than the target value, making the listed percentage inaccurate.

So, why does the game ‘lie’ to us?...The 2 RN system encourages low Hits missing and encourages high Hits hitting...it mostly benefits the player, as playable characters tend to have high Hit and enemy the player needs to personally line up the shot on an attack, in real time, to ensure its effectiveness.
characters usually have low Hit. Thus, playable characters will tend to hit more often than usual.

This example doesn’t explain why the game designers would want the player to hit more, but it seems like a logical extension of a poor understanding of “real” statistics as demonstrated by Brown. An 85% chance feels like a sure thing, so True Hit makes it a 95.65% chance of happening, instead of the 15% (or a little more than 1-in-7, compared to the slightly less than 1-in-20 chance with True Hit) chance of failure. You would expect to see at least one 15% event occur every seven times, which, over the course of the game, would be a fairly noticeable amount. To use the quote’s term, the phenotype can “lie” to the player; it creates the image of probability while hewing closer to the player’s mis-understanding of probability.

But where video games really reveal where coding matters is in glitches. I chose to use the language of genetics to describe code because it suggests the connotations of mutability. Much like genetics, computer code is executed blindly; there is no conscious decision on whether or not to execute the data. As a result, errors occur in the phenotype. Glitches, like genetic mutations, have a wide range of effects and effectiveness. Wilma Bainbridge and William Bainbridge’s “Creative Use of Software Errors: Glitches and Cheats” identifies “751 glitches in 155 popular video games,” (62) to examine how these glitches emerge and how they affect the game. Some are terminal and, ideally, weeded out in testing, others are trivial or uncommon, but some prove to be beneficial. Street Fighter II, a fighting game, introduced the concept of the “combo,” a quick string of attacks that cannot be blocked so long as the first connects. This was originally an error, from the game
not properly processing additional attacks so long as they were entered quickly enough (IGN). It is now a fundamental element to most fighting games made since. Bainbridge and Bainbridge looked at another benefit that comes with glitches, writing, “However, there is a slight magical quality when he leaps through an object, and some players find this entertaining. Thus, one of the many ways in which a player may enjoy a video game is to explore it in search of these discrepancies, relishing the variety of effects they can cause” (65). Glitching into data the designers left behind unfinished did not intend for the player to reach, they write, is exciting in its own way. While the genotype is fixed, glitches are still effective in shaping the player’s game experience, either as they are countered or exploited, and can reveal new and unexpected potential for play. Speedrunning, a type of play that emphasizes beating a game as quickly as possible, often exploits glitches that let players pass through walls, or alter the random number generators. This can be done through the genotype, via directly hacking the code or downloading mods, but competitive speedrunning, as stipulated in the rules on Speed Demos Archive, must “contain no cheating,” which the rules define as no alteration as the hardware or software of the game, so these glitches come from actions in the phenotype, creating situations that lead to a genotype misfire—such as moving through a level more quickly than a barrier can load. This kind of play both draws forward the interaction between the genotype and phenotype in gaming more clearly, as well as demonstrates the amount of variety possible in what constitutes a playthrough of a video game, both unique elements to the character of the game.
The Avatar and the Interface

The interface, as the space of the game the player interacts with, can only occur in the phenotype, but it is absolutely controlled by the genotype, in looking at the underlying rules is what dictates the nature of the game. The Interface, then, is where gameplay occurs. The interface is what makes a game a game, because, without some means of input, a game is just an computer generated film. The game’s mode of input is a key element to the interface of the game, even though the physical element (such as the keyboard) is not genotypically generated in any fashion. It should be noted that the processes of interpreting those inputs, however, still are. Newer game consoles include elements other than the usual button pressing inputs, such as the Nintendo Wii’s motion controller, or the Xbox Kinect, which David Rieder explores in “From GUI to NUI: Microsoft’s Kinect and the Politics of the (Body as) Interface.” Though acknowledging that the future adaptations of the technology will be where the real meaning of these interfaces will be found, Rieder sees potential for the use of the Kinect’s reading of the player’s physical motions as an input, as “once a user’s movements and position are redefined radically, the environmental feedback from the projected movements has the potential to transform how that user experiences herself, which can lead to new, counter-hegemonic experiences of self” (5). Though, as most games currently use the general form of a controller or a mouse and keyboard, the focus on the interface is more on thee other element of a digital being as an object in the phenotype, which, as a part of the game, has its own reality and connection to the player. Joohan Kim writes in “Phenomenology of Digital-Being” about a simulated pool game that claims
to model the game as accurately as possible, accounting for subtle physics interactions between colliding balls (91), an effect that is almost entirely invisible to the player, only handled by the game’s physics engine to produce the outcome of the shot. But this physics accuracy does not give the realism to the game; though it might produce a situation more accurate to the actual world, the balls gain their realism from being pool balls in a game of pool. Kim adds, “The virtual balls do not stand for something else, but for themselves. In other words, when you play the Virtual Pool Game, the balls that you hit are not representations of other real balls in the real world. You are playing not with a sign of the balls, but with the balls themselves” (93). Though they, much like this paper, typed and read electronically, share a connection of familiarity with a physical object of the actual world, it is an object, underwrit by coding and observable/accessible by the player. These objects then proceed to structure the experience of the game by responding to the player’s input.

McLuhan writes, “Electricity is only incidentally visual and auditory, it is primarily tactile” (Loc 3550), which is extremely evident in gaming. While the pool balls have a visual element, perhaps an attached audio cue, their reality in the gameplay comes from their sense of physicality, the way their visual or audio elements compensate for the lack of a tactile equivalent. Bogost, in *How to Do Things With Gaming*, writes about the purpose of games, specifically very realistic hunting games, as “the pleasure lies largely in the mastery of mechanism” (138), creating the game experience from the feel of using, experimenting with, and mastering the use of a gun. Later in the book, Bogost raises the question of how
much the player is able to engage the interface—after all, it is beholden to only the outcomes that fit the programming in the genotype. He writes:

> Despite popular opinions suggesting that GTA3 [Grand Theft Auto 3] allows a player to ‘do anything’ it actually offers precious little freedom of action, since indeed only a small number of acts are really supported in the game world. Instead, the game offers freedom of continuous movement, which players sometimes partake of as its own pleasure (48).

The game is not a world-simulator; its freedom is not in its ability to capture the same potentials life has. It is designed and written for that “freedom of continuous movement,” to enable the player to use the use the mechanisms of travel and motion to master the spatial environment. Games are the mastery of the mechanism of the interface, whether it is a realistic gun, or simply an open cityscape for the player to wander across. It is the expression and engagement of the objects realism, participating in them to establish the (intended or otherwise) structures of the game experience. Manovich writes that in gaming “narrative and time itself are equated with moving through 3-D space, progression through rooms, levels, or words” (245). Motion, whether through a representation of physical space or an abstract information space, is the core element, purpose, and goal of a game’s interface.

In *Understanding Media*, Marshall McLuhan writes, “Men at once become fascinated by any extension of themselves in any material other than themselves” (Loc 654). Video games, as “interactive media,” have an obvious connection to this consideration. The interface is what the player interacts with, but it is not
necessarily the means by which the player projects effectiveness into the game. Kim’s pool balls have a presence to the player independent of the player striking them. The “avatar” is the means by which the player interacts with the world of the game. Generally, the term is associated with a player character of some kind, the game protagonist. However, there are many varieties of game that do not have such characters. In these cases, the avatar is simply whatever means by which the player is effective in the game world, such as a cursor, a text parser, or the targeting reticule of a First-Person Shooter. Looking at Crick’s “The Gaming Body,” I see that there are other means of mediating between the player and the object of the game. Speaking of the UI (User Interface, extradijetic information overlay that presents information such as ammunition, health, etc.), Crick writes, “They are essentially functional information that the player uses to operate on the game space (rather than within it)” and how they form the “architecture through which players gain agency in their interactions” (264).

The interface is the means by which the player affects the world of the game, so it is to be expected that a different interface creates a different style of gameplay. As in Bogost’s experience of GTA3, a discussion of the game needs to engage what the game is, revealed through the player’s means of interaction. It is also possible for a single game to have various types of interfaces available, either for the comfort of the player or to better facilitate different aims in play. Alex Golub, in “Being in the World (of Warcraft)” illustrates the technical skill necessary to successfully “raid” (to use Golub’s definition: “large-scale set piece battles between a team of twenty-five players and computer-controlled monsters called ‘bosses’ [19]) in World of
Warcraft ("WoW").

Golub’s descriptions of the game highlight UI mods, calculators, and programs that enable the team to communicate with each other, necessary elements, as “raid encounters are high-pressure, emotionally intense, ritualistic activities in which players learn to repeatedly perform the same actions in a more or less identical way in a coordinated manner in order to kill a boss” (31-32). However, WoW permits a player to make use of many different styles of play, and some may never experience raiding (or need a raid-friendly interface) at all. There exist servers exclusively for hosting players interested in role-playing, and there are in-game options to assist in that pursuit, as well options for an act as simple as loitering in a high-traffic area, showing off the owner’s possession of rare or aesthetically pleasing items and equipment. While WoW’s size incentivizes it to be more open, to offer “something for everyone,” it still serves as an example of the gameplay experience offering great potential diversity of equally legitimate forms of play within the game.

An example of a WoW UI for raid cohesion. Notice how the bars, numbers, buttons, and charts almost obscure any aesthetic elements to the game.
Ergodicity of a Game

A game, however, cannot be said to be just the code and the interface. Christiansen’s drawings are expressed code, a digitally projected movie is expressed code—but none of those can be called video games. There has to be a player at the other side of the screen to even start. Games are a medium in motion; these objects need to be interacted with, either by the player or by other objects in the game. They are Aarseth’s cybertexts, works where “the selective movement is a work of physical construction that the various concepts of ‘reading’ do not account for” (1). While a reader can watch a film in reverse or skip to the last page of the book, those experiences are gibberish, and can’t be called watching the film or reading the book. But there exists no proper, privileged experience of a cybertext. As I have mentioned before, unlike Aarseth, I use a different model instead of his, which elaborates on the connections which elaborates more on the various interior elements to the game (which I was content to fold into the genotype) and emphasizes the experience of gameplay. His model is certainly accurate to how game’s function, but the interplay of visible and invisible elements is not particularly emergent in the gameplay experience. Aarseth also focuses on early adventure games, a genre that relies on applying the proper commands at the proper time and punishes improper commands, so the game is considered interactive without much variance. It is important that this doesn’t change the principles of the cybertext, as the interactivity permits the generation of new possibilities, even if these possibilities are dead-ended by the game’s programming.
The significance of what Aarseth refers to as the “figures” of the text (90) relates to games in the question of “nonlinearity.” While the genotype of a program is always a fixed content, the phenotype of the moment is variable, and the game as a cybertext has extraordinary variability. Even a single forked branch, as Aarseth points at, shows two potentialities, not paths—so any “lines” for linear consideration is always abstract, and thus, nonlinear. Consider Twine games, which are interactive stories made from a series of hyperlinked pages, as genotypically complete—every potential permutation of choices is pre-programmed, as every clicked link needs a destination. They are still cybertexts, and, before the game is played, present a nonlinear potentiality to the player. What is important for the cybertext’s nonlinearity is not unlimited freedom to do anything, but the nontrivial effort to create the text from potentiality. Even games considered “open-world” or “free-form” do not have unlimited possibilities—they are limited to only generate what can be procedurally generated phenotypically from the genotype—so this potential variability is what’s important to consider for all games. This variability is then rooted in the figures of nonlinearity, for the human experience will always have a linearity of time, as Aarseth notes (43), so the cybertext experience must always be temporally linear with a vast possibility of variability.

Hayot and Wesp establish in “Style, Strategy, and Mimesis in Ergodic Literature” that video game play is structured by “strategies,” the practical decisions that alter gameplay, using RPG (role-playing game) elements like choosing character race (408). Citing Age of Kings, a real-time strategy game, Hayot and Wesp point to the first choice, the race of the civilization the player backs. Each comes
with benefits, for the Goths, the player can make infantry units faster, and
drawbacks, such as the inability to make heavy defensive structures. This early
decision plays into later decisions in how to play the game—the Goths would not
function optimally under a defensive strategy. Looking at strategies show the
multiple layers of player interactivity and choice, each of which points forward to
further choices. After deciding to play as the Goths, for instance, the player has to
choose which units to buy based off the bonuses, which leads to choice in how to use
them, and so on. This can be said to be how the faction “plays,” and using the same
principles, the player can approach how the game itself “plays.” Generally speaking,
this is sufficient for explaining a game objectively; completing what the “what” of a
game could be called. It’s the completion of the coded data of the genotype, the
expressed data of the phenotype, and the ergodic potential created by the player
interface. At the same time, describing a game by only it’s objectively present
elements isn’t really a description of the game. How an element or a faction or a
game “plays” is only part of playing the game, but that will be addressed later in this
paper.

Expressions of Code

I believe I should now look at other examples of games to demonstrate what
makes a video game distinct from them, and through that, what makes the use of the
phenotype/genotype relationship significant. McLuhan charted the evolution of war
games into baseball, then at risk of being overtaken by television-friendly football.
Video games, while still in that tradition, are distinct from their predecessors. The
The genotypic-phenotypic relationship is meaningful in that it creates absolute restrictions upon the game that other, analog games don’t have to put up with. Later, I will engage the significance of how the player’s relationship with these absolute rules enables a greater variety of legitimate playthroughs, but for now, I intend to argue that video games should be understood as distinct, even if similar, to other forms of gaming. I start with traditional, analog games, such as American Football and Chess, which have well-established rules, much like in a video game. Narrative “tabletop” games such as Dungeons and Dragons, much like the video games it had a role in inspiring, tie the narrative elements of heroic fantasy with numeric representations of events. While these non-video games have many apparent similarities to video games, their rules are enforced by the sanctions of ruling bodies or social understandings with the other players. That creates a flexibility and responsiveness to the rules that video games don’t have, but at the same time, makes them even more fixed in what constitutes legitimate play.

While there are many non-video analog games, I turn to football. Football stands out to me for its considerable popularity, which enables a great variety of types of play: NFL football, College and High School matches, a casual pickup game, etc. all feature different dimensions and expectations of how the game is played, but can all be identified as “football.” Much like a video game, it is underpinned by rules—a regulation football, football field, uniforms, etc. are all defined by either a formal governing body or an informal understanding that establish what is football. For instance,
The Ball must be a “Wilson,” hand selected, bearing the signature of the Commissioner of the League, Roger Goodell. The ball shall be made up of an inflated (12 1/2 to 13 1/2 pounds) urethane bladder enclosed in a pebble grained, leather case (natural tan color) without corrugations of any kind. It shall have the form of a prolate spheroid and the size and weight shall be: long axis, 11 to 11 1/4 inches; long circumference, 28 to 28 1/2 inches; short circumference, 21 to 21 1/4 inches; weight, 14 to 15 ounces (nfl.com).

is the definition of a football for competitive use in an NFL league game. An official game of NFL football cannot happen outside of the parameters of this rule. A less official game, while certainly not requiring the commissioner’s signature, still requires the use of a ball, and generally, would make use of a ball of the same dimensions as above, particularly as a prolate spheroid, as opposed to a perfect sphere (such as a basketball). Additional rules establish the order of actions, what actions are forbidden, and the consequences, such as points or yards penalized, of an action. Playing football could be said to be the execution of the rules of football, but it’s not within the genotype/phenotype relationship. In a video game, the only thing that can exist is what’s executed by the rules. If the game is tasked to execute something outside the bounds of code, the system crashes\(^5\) or otherwise refuses to execute. Football has not such limitations; the rules define football negatively, by excluding acts that are forbidden in football. While, generally, years of

\(^5\) Normally, there are systems in place to limit such crashes, such as a text based game responding to invalid input with a stock message, a “invalid input” warning. In Bainbridge and Bainbridge’s study, the mean of their ten point scale of error was 3.64, “implying that most glitches are bland” (69).
experimentation and efforts to define the optimum strategies have calcified the understanding of football somewhat, the game still has more potential options, in terms of strategy, player ability, and even basic assumptions of the game than can be calculated. New additions and revisions to the rules indicate the process of creating a new understanding of what is possible in football, and the official response works to incorporate that understanding into the rules. A video game cannot do this; it is entirely bound by the genotype.

Even without the consideration of physical restrictions, a video game is distinct from an analog equivalent. “Tabletop” games, named to emphasize that they are played in a physical space, on a table, as opposed to the digital space inside a computer, consist of board games, pen and paper role playing games, and card games. As an example, I choose to look at Dungeons and Dragons (D&D), one of the more prominent narrative tabletop games. D&D is a game built around simulating heroic fantasy situations, such as fighting a battle or talking your way out of one, and these situations are, like in sports, underpinned by rules. Generally, matters in D&D, much like in video games, are decided by numbers in the background “code” of the game. Aarseth writes that D&D “might be regarded as an oral cybertext,” (98) and shows its influence in the creation of, and how neatly it could be transformed into, the early video game Adventure. While the underpinning rules, are not quite like those of a video game, there are clear similarities between the two. To take from Wizards of the Coast’s official Systems Reference Document v. 3.5, when a player chooses an action he or she wishes to take (for example, convincing a guard to overlook trespassing) that includes a risk of failure, the player first tallies any
relevant statistics (the character has a +7 bonus to diplomacy). Then, a twenty-sided die is rolled as a randomizing agent, the physical equivalent for an RNG, with a presumed 1-in-20, or 5% chance of landing on any specific number. The final number is compared to a given bar to clear (in this instance, let’s say a 17 must be matched or exceeded, meaning a 10 or better must be rolled to be successful, which indicates, roughly, a 55 percent chance of success6). There are other computations, mostly related to using different dice of a varying number of sides, but in general, the d20 is used for deciding success and failure situations. Unlike in football, these situations are entirely programmatic, player characters, items, and situations have specific numbers behind their abilities. However, even a game that remains close to those numbers, the space of the game is determined by human decisions, acting outside the bounds of the rules. While the dice are used as a means of simulating randomness, the play of the game is determined by live human actions, between the players and the Dungeon Master, a player tasked with taking the role of creating the elements of the world outside the players’ avatars. While the Dungeon Master could be making use of an already written adventure, the game is open to the flexibility of human decisions at any time.

I’ll acknowledge that some tabletop games like the boardgame Sorry or Chess do not include this element of personal variability, and are defined by their rules in a way similar to the model I’ve proposed. Bainbridge and Bainbridge do point out that rules of traditional games are only enforced by “a tacit agreement to do so,”

6 “At least from the point of view of Newtonian mechanics the rolling of dice is completely deterministic,” (Hull and Dobell 239) since the angle of impact is mathematically predictable. It, however, works well enough for randomness, since the average player lacks the skill necessary to guarantee specific rolls.
(73) but such “flipping the board” strategies aren’t particularly recognized as legitimate, even if they are potentially possible in any game played on a board. It’s not surprising that Chess was used as a subject of computer science research, most famously with Deep Blue. In these instances, the difference between a video game and a board game would be best seen largely in that the board game is handled by those “tacit agreements,” as necessary as they may be. The computer game won’t function outside of the pre-coded parameters. You could swap the board and replace the pawns with bottlecaps; there is nothing to the objects themselves that are fundamentally present in a functional game of Chess. Those items are associated to the rules socially, by the players, rather than absolutely, by the computer code that makes up the game itself.

Now that I’ve established how other games do not fit the model, I would like to look at a specific game in depth to demonstrate its nature as a cybertext. Video games are a constrained medium, as opposed to those other examples, they exist only within what their genotype enables, yet at the same time, are open for play within these boundaries. *Cookie Clicker*, produced by French independent game designer Orteil, is about as simplified as a game can be, structurally. While even *Pong* sought to work as a simulation of table tennis, *Cookie Clicker* is little more than affecting numbers, using the “cookie” as a flavorful unit descriptor. The interface is a screen with a single cookie on the left side, which, as per the title, can be clicked to increase a counter above the cookie by 1. On the right side, there are upgrades and items, which can be purchased for certain amounts (a cursor can be bought for 15 cookies, increasing the cost of future cursors by 15% per each purchase, and adding
.1 cookies per second, or CPS, to the counter). With the exception of randomly appearing Golden Cookies (which gives additional bonuses to cookie totals or CPS) and some holiday gimmicks, this is all there is to the game, means of increasing numbers and the costs of those means, moving through abstract spaces defined more by waiting times until next purchase than representations of geographic space. *Cookie Clicker*’s simplicity makes it a game that is situated as close to the genotype as possible. It’s easy to conceive of how the game might be read in terms of just the numbers and computations, perhaps with the addition of some outside computations made by the player, rather than the actual game experience. But *Cookie Clicker* isn’t a calculator, it’s a video game, there is still an element of play within these constrictions.

After Manovich’s opposition to the idea that “navigable space can legitimately be seen as a particular kind of an interface to a database” as now “space
becomes a media type” (251) we can now see a playable database, which still has a transversal of cyberspace. The colorful interface and comic labels have no impact on the gameplay itself, it would function the same if played through a spreadsheet. Not a traditional model for a game, and yet, *Cookie Clicker* became surprisingly popular, showing that there is some appeal in gaming cut down to just increasing numbers. The distinction between the genotype and phenotype is fairly transparent, particularly through mods that calculate, for the player, the specific numeric bonuses of each item and calculations behind the multipliers. The interface keeps the information organized and provides some aesthetic value, but it is mostly as utilitarian as possible. But as a cybertext, *Cookie Clicker* reveals that gaming might be more open than Hayot and Wesp describe

As readers experiment with different decisions in the face of these rules, they are encouraged to discover approaches and principles that are reliably effective if they want to succeed, a process through which readers move from a series of unconnected individual choices into the development of a coordinated practice, and a process whereby the text effectively disciplines the reader into making “good” choices in the text’s terms (406).

There could, possibly, be a mathematically optimal way to run through the game, and there do exist mods to wholly automate the purchasing, but even in introducing or encoding instructions for automation, but does the game discipline the player towards such an outcome? Choices in purchase priority, order, and timing are all present in decisions between clicking on the cookie or just letting the game run on
its own CPS in the background, etc., even if they lead to the only differences between two games is a difference in time between reaching certain CPS milestones, both have different reasoning, goals, and manner of enjoyment behind the game, a rejection that there might be objective “good” choices.

Video games are, at their core, made up of lines of code programmed onto a disk or shared over the Internet as the genotype. There are many potential expressions of this code, but the phenotype can only exist so far as they are coded into the genotype. While glitches exist, they are really unexpected outcomes from the genotype; they aren’t total deviations from the game proper. This vast potential of outcomes created by the game and the code is what makes games unique as Aarseth’s cybertexts. As a cybertext, however, the game is still not wholly in motion, yet. Seeing the branching options and the means by which they can become linear is not the same as the act in itself. A video game needs to be played.
Gameplay

Wolf, in “Assessing Interactivity in Video Game Design” writes “The structure of a game’s interactivity and the nature of the choices that make it up are at the heart of the gaming experience and the subjective assessment as to whether a game is considered fun” (84). Penix-Tadsen quotes Alexander Galloway’s “If photographs are images, and films are moving images, then video games are actions” (177). Good assets, coding, and design can make a virtual reality, but those are not enough to make a functional game; a cybertext needs to be played to have any meaning. In gameplay, in reading that cybertext, the player experiences the creation of linearity, collapsing the game into a personal experience. Gameplay, however, should not be seen as life-like, as though a player simply acted on a blank canvas—through the avatar, the player reduces, rather than creates, options, turning potential into experience. The process of doing so, as Wolf notes, is what matters in the evaluation of a game. A discussion of a game that looks at the mechanics, the assets, or the story ignores the experience of play, which should have priority. The reality of the game can’t really be judged until it is played.

To look at gameplay as a collapse of a game’s potential, the first element to be explored is the point on which the game collapses, the avatar. For games, the avatar enables the player to become a “Spect-actor,” a combination actor-spectator as envisioned by Augusto Boal. In both acting through the avatar and observing the action as a player, the player witnesses the collapse he or she creates, taking the open spaces presented in the phenotype and turning them into the players personal experience. Then, from there, the different genres of games can be identified from
what means the player uses or doesn’t use to form the game’s experience. This is where the narrative of a video game emerges from, in that individual experience the player has in gameplay, regardless of other narrative elements left in short videos, art design, or prerecorded audio clips. Finally, I see the game *Super Mario 64* as a good example of what a game can be, for its emphasis on open opportunities and focus on exploration, guided through various limitations and restrictions, or in finding ways through or around those restrictions.

The Spect-Actor

In playing a video game, the player is removed from the actions enacted through the avatar, but that removal isn’t particularly an absolute divide. More than just an exchange of inputs and outputs, a player is, ideally, engaged in the game. In making an action through the avatar, players can observe their own actions from an outside perspective, becoming a simultaneous spectator and actor, or spect-actor. McLuhan, speaking about the transformation of the electrical world, says, “Today the action and the reaction occur almost at the same time,” (Loc 31) and in gaming, the output and the input strike nearly instantaneously (and obvious input delays, such as lag, is seen as a technical error, not an element to play). Gek Siong Low summarizes this connection in “Understanding Realism in Computer Games through Phenomenology,” arguing that the player does not press buttons, but acts. “Computer games are a unique phenomenon in that nowhere else can you find yourself projecting your intentions, actions and identity onto something else that is obviously not you, and yet is ‘you’” (4). Bogost, in “The Phenomenology of Video
Games” singles out “the phenomenal aspects of games, like images, sounds, controller buttons, and vibrating rumble motors, all trigger perceptions in their human players, who somehow assemble these inputs and outputs into action, reaction, and meaning” (26), and later in How to Do Things With Gaming looks at the means of haptic feedback in games, where tactile feedback comes from vibrations in the game’s hardware. Bogost identifies that haptics can signal, “the pulse of a heartbeat...a tackle...the tremor of a gunshot...the subtle signal of a motor signals the cursor entering a button.” (Loc 1271-1272) a broad variety of significances from the same feeling of a rumbling controller in the player’s hand. Through the connections between input and output, the players can place themselves in the game while being removed from it.

Thus, the player of the game is in the game and outside the game. I’ve already discussed how the avatar helps mediate the player’s influence on the game, but the avatar also puts the gamer within the phenotype of the game. As an interactive medium, the player both acts and observes, reminiscent of Rosseau’s festival, but unlike Derrida’s reading that, “this festival without object is also a festival without sacrifice, without expense, and without play” (307), the game is very concerned with play, as it does have an object in the phenotype. McLuhan makes a similar theatrical comparison, writing, “In a word, does not Aristotle’s idea of drama as a mimetic reenactment and relief from our besetting pressures apply perfectly to all kinds of games and dance and fun?” (loc 3388). But video games, particularly, permit a fusion of performer and observer, reminiscent of Augusto Boal’s Spect-Actor, (Castañeda 82), where the performative aspect of Boal’s theatre
games makes use of the dual performer/observer role to explore the performers feelings during said games. I see a clear connection with the theatre here, as both work as interactive media, whether between the actor/other actors/audience dynamic or the player acting on the phenotype. What I see is video games “collapsing” the theatre, being more isolated and more self-oriented. As a result, while Boal’s work was to connect the theatre to everyday life to mediate disputes, video games do not necessarily create such a Spect-Actor. Golub does point out how WoW, as a necessarily social game, guides and influences the structures of behavior of teammates, points to the realism that makes games “finite provinces of reality embedded in the deeper and more primary experience of everyday life that serves as paramount reality for most humans” (23). Regardless of the practical ability for any individual game to help navigate issues of social connectivity, video games present a medium where the player is an actor and observer, and that is significant to Hayot and Wesp’s point about how games respond to choices with a disciplinary function. All games have a function of the player’s interactivity, awareness, and response, and it should be acknowledged.

Continuing Golub’s point about WoW as a social game, there is, in gaming, often more than just the one actor. Multiplayer games, whether with players on the same system, in the same room, or split across the globe, only connected via the Internet, show a means of altering the gameplay experience beyond even some of the potential of the cybertext. While a game is still bound by the limitations placed by the genotype, the social aspect of gaming permits a broader range stemming from the complexities of real human social interaction. James Zappan, Laura J.
Gurak, and Stephen Doheny-Farina’s “Rhetoric, Community, and Cyberspace,” where they look into the first MUD used for educational purposes, *Diversity University*. They describe a combination of oral communication from its potential for communication to occur “synchronously in ‘real time’ and immediately or ‘face to face,’” and written communication in its ability to “reach a multiplicity of individuals quickly across time, space, and cultural differences” (403). They found a break in structure, but in an “orderly,” “egalitarian,” and “often carnivalesque” way (407), where the speakers’ ability to make use of *Diversity University*’s game elements, such as their ability to impact the environment and create objects gave a physical presence even in a non-physical space. Their experiences, though, were on a much earlier form of online gaming, much more in-line with an online chat room than more complicated contemporary games. Golub outlines some of the social interaction necessary for successfully completing a raid in *Wow*.

Phenomenologically, one experiences flow similar to that experienced by professional musicians or athletes in the course of skilled performance (Csikszentmihalyi 1991). Technically challenging, phenomenologically intense, emotionally compelling, and deeply connected with self-esteem and group membership, raiding involves serious investments of time and effort, and as a result, successful downing of major bosses is a collective accomplishment that creates social solidarity and can even serve as an important moment in the biographies of individual players. (32)
The social aspect of the video game can easily exceed or supplant the mechanical aspect. In Golub’s example, there is a social interface, tools that exist to facilitate social interaction rather than having an actual game outcome, such as support for voice communication, text, or meaningful avatar actions, such as a command that can make the player avatar cheer, dance, or jeer at another player character. Golub highlights these options in terms of how they benefit an in-game goal, the raid, and namely in how it enables certain strategies and cooperation to achieve an in-game end. However, a multiplayer game does not need to have only its ends be in the game. Online video games have developed application in socialization and role play, as explored in David Feldon and Yasmin Kafai’s “Mixed Methods for Mixed Reality: Understanding Users’ Avatar Activities in Virtual Worlds.” Their research on how users on the online game Whyville decorated and personalized their avatars as a means of developing their social presence, which “indicates the extent to which users do not notice the mediation of social interactions embedded within the virtual space” (579). In Whyville, users play educational games to receive digital currency that can be redeemed for accessories and customization of the avatar. Feldon and Kafai’s study of 595 players found that the two most visited locations were those for said customizations (33.4%), exceeding the actual socializing (27.5%), either by chatting or sending messages (585). The ends of playing Whyville is in the socializing through the game’s mechanics, producing a unique presentation of the player, turning the vast potential complexity of the cybertext into a means of self-representation.
Boal’s original model of forming the spect-actor in *Theater of the Oppressed* begins with a process of knowing the body, “its limitations and possibilities, its social distortions and its possibilities of rehabilitation” (126). While I am not proposing either *WoW* or *Whyville*, or any other social game I am aware of, as an expression or success of Boal’s philosophy, I do see the game as a media that should be further explored for its potential in those regards. After all, the fluidity of the game avatar, capable of being largely detached from the physical appearance and characteristics of the player, creates a distinction between the player’s self and the avatar, which starts to, as Boal recommends starting with, “undo” the learned experience of the players. In the second stage, where the players are asked to “make the body expressive,” Feldon and Kafai’s research points towards the effectiveness of gaming in that regard. That gaming does not consciously have, at present, guidance for the player to think critically about avatars and actions is not an insurmountable obstacle. After all, as Boal states on his own examples of second stage games, “The participants are invited to ‘play,’ not ‘interpret,’ characters but they will ‘play’ better to the extent that they ‘interpret’ better,” (130) emphasizing the same loosening of the person as in the first stages. Boal’s next two stages (theater as language and theater as discourse) emphasize the specifics of his model of theater of the oppressed, which does not match to the game experience as neatly. But the groundwork is there, and, as Bogost can attest to in *How to Do Things with Video Games*, further work is already being done with games such as *Darfur is Dying*, which use the mechanics of gaming and the avatar identity to foster empathy in the player (19). There exists a potential to make use of the video game as a medium to
address socially relevant topics, but, as shown with *Darfur is Dying*, the strength of the address comes from how the game plays, how the player is able to situate themselves as simultaneously an actor and observer, rather than just as a listener, viewer, or hearer. Simply addressing a significant topic in the game’s content is insufficient.

Collapse

I have argued that the genotype/phenotype divide and the relationship between the potentially executable and the executed is key to video games as a medium, and this is how. In collapsing that potential, going from what is permitted and planned in the genotype into a specific, unique phenotype, video games reveal what makes them stand out against other media. Watching a film, reading a book, or listening to speech all involve collapsing some element of understanding inside the listener, watcher, or reader’s head. Attaching context and making attachments to make sense of the visual or sonic data the body interacts with. But in a video game, that collapse is external to the body, the player has to actively work to turn the potential into playthroughs. The branching created by the avatar can be fairly simple, to the much more open possibilities found with moving a character through a three dimensional space. Branches don’t necessarily have to be always viable, as J. Madison Davis’ “Is Heavy Rain in the Forecast?” looks into the game *Heavy Rain* as a detective story, highlighting that “In essence, the game worked like a flowchart with some choices leading to dead ends and others advancing toward one of the

7 The aforementioned Twine game can be represented as a hypertext instead of a cybertext, if it was treated as something to be read instead of played.
solutions. Detective stories work this way as well” (10). Even withholding other directions, the game permits, as Davis notes, the player to act like they’re in a detective story, with the potential to either catch or be caught by the dead ends. At the same time, many other games give the player a great deal of freedom in how to approach challenges, levels, or the entire game. Wolf writes about the considerations towards replayability, where multiple playthroughs are made as the player becomes more skilled at gameplay “requiring both reflection and reflex action,” (81) improving the players score or reducing the time on the playthrough, with speed runs as the extreme example, taking a route through the game that might only loosely resemble the intended playthrough.

Jay David Bolter and Richard Grusin, in Remediation: Understanding New Media, write on how new media remediates old media, citing how games like Myst and Doom take on the legacy of cinema to become something like “interactive films” in how the player controls the avatar as a character in the narrative and guides the camera, editing where the narrative goes and what is seen (47). But while a video game, especially through the use of cutscenes (short, uncontrolled video segments in a game), can remediate movies, the act of collapse suggests that playing games are an act of remediation in and of itself, taking the potential presented in the phenotype and collapsing it through the avatar into a cohesive narrative. The player’s role as a spect-actor means that the player’s dual role of actor and observer levels that gameplay is a process of multiple remediations, both in acting (from the phenotype) and observing (from past experiences). As Bolter and Grusin state that both hypermedia and transparent media are in pursuit of a real defined as “that
which would provoke an immediate (and therefore authentic) emotional response,” something I see video games, as a media, come closer to that than most (53). While video games certainly aren’t the real, they give a means of mediating it most similar to life. Powell’s experience working with children in the differences between an analog game and a video game shows how the digital approach necessitates a different approach, but one that permits the player to think about the experience from a more regular, simplified perspective. Bogost writes about games dealing with significant issues, saying, “These games say something about how an experience of the world works, how it feels to experience or to be subjected to some sort of situation,”(14) but that seems too limiting to only apply that towards games about weighty geopolitical situations. Exploration, or even just moving across a space, is a part of how the world works, a fundamental experience to be examined and reexamined.

Space is significant in games, beyond just the canvas to play on, the space created for a game shows the game’s potential before collapse most clearly. Gail Shivel’s “World of Warcraft: The Murloc is the Message” writes, “All of the regions in the World of Warcraft ‘world’ are of similar size: far too small to contain in real life what the game represents in them,” (209) showing the representational nature of video game space. The vast, open expanses and repetitive structures that can occur in real life are unnecessary for video game spaces, space is determined by its significance, there needs to be something to do. Marie-Laure Ryan’s “From Playfields to Fictional Worlds: A Second Life for Ariosto” addresses how the game The Labyrinth of Ariosto, the first board game to have tokens move through a linear
The players take on the roles of characters from Ludovico Ariosto’s *Orlando Furioso*, and recite certain sections from the poem when they land on certain squares. Ryan acknowledges that there is no connection between the shape or motion on the board that actually relates to the plot or themes of *Orlando Furioso*, other than perhaps the linear chronology of life. What’s notable is how it takes a poem and puts it into the space defined by the board, rolling the dice is really to “perform metanarrative moves whose purpose is to unlock more of the story” (166). Here, the space is merely the guiding line by which the players are directed towards executing the game and reading/hearing the poem. Moving through game space in a computer game represents a different use of space, though it is still a means of guiding, as well as executing, the sequence of potential actions. Ryan writes

> Fictional game worlds present themselves to the player as relatively smooth landscapes, structured only by the presence of discrete objects that mimic real-world objects. But under the apparent smoothness of the display lies a highly striated computer representation that divides space into distinct areas and associates these areas with different possibilities of action (166).

While space is flavored and decorated (Shivel’s description of the “foreboding ruins” (209) of the Duskwood right next to the pastoral Elwynn Forest), the real distinction between the regions comes from the potential action the spaces contain. The difference between an area of player-versus-player content or a region with NPC

8 Ryan identifies *Parcheesi, The Game of Life*, and *Chutes and Ladders* as examples of contemporary games in this style (164).
guards to discourage such interaction within the region defines the space more than the flavorings between the two.

On account of the many branching paths, a game is thus many games. Discussion of a game, then, should acknowledge this openness. Game design already does, as Jill Walker’s essay “A Network of Quests in World of Warcraft” examines how the game structures its sequence of story beats built on an anticipation of how players would move through the story. “I would argue that this semi-structured organisation through a network of quests and always available self-selected activities within set boundaries matches the way we read and experience the world today,” (4) following how the quests merely direct a player’s interests toward an open space and how to make use of it. It can be taken even further with Christiansen’s observation that his computer-generated line drawings were more discovered by the author than authored, “Games like Go and Tetris are abstract; if they have any aboutness, it is limited to the experience of the system itself” (15). Even that seems too limiting at times, the previously mentioned Speed Demos Archive shows that a valid playthrough of the game could be more an exploitation of unexpected mechanics, turning the interface in an unexpected direction. Score, narrative, and challenge can all be pursued or ignored, and a player could choose to remain in one spot in the game, doing nothing more than enjoying the game: Manovitch saw Myst as more akin to traditional artwork, “something to behold and admire rather than to take apart modify” (245). It still creates a playthrough, it still is an element of what the game can be, what the game is. “Sandbox” games, such as GTA3, are more defined by their semi-aimless travel, exploration, and
experimentation than having the player character complete the plot, while a game such as *Cookie Clicker* has no specific goals or ends other than an ongoing urge to increase numeric values.

Narrative

Much in how Superbowl XXII and Superbowl XXVI, despite using mostly the same rules\(^9\), have a different story that comes with retelling the game. “Storytelling” in games comes as much from the individual experience of the playthrough as from the scripted plot relayed from the text, recorded dialogue, or cutscenes. While the experience of playing the game conveys the specific character of the game that individual playthrough is indelibly affected by the player’s choices and decisions in creating that experience. A well-played game of even *Pong* is memorably distinct from a poorly played one. And other games permit even more variety. Tom Bissell’s *Extra Lives: Why Video Games Matter* is a collection of essays about Bissell’s experiences of playing various games. The question of “Why Video Games Matter” isn’t answered by the directed, designer-planned elements of a game, but rather, Bissell’s own time spent in gaming. He explains his 200 hours logged in *The Elder Scrolls IV: Oblivion* as “Oblivion is less a game than a world that best rewards full citizenship, and for a while I lived there and claimed it,” (loc 111)

\(^9\) Both Superbowls feature the Washington Redskins, which is a key element of the narrative of the teams. For viewers, such as my father, this element is hugely important in the retelling of their game of the Superbowl. I’ll discuss observing the game later, but identifying with a player is a key element to how the experience of the game is read.
Discussions of gaming are already engaging with some elements of this issue. Game designer Clint Hocking coined the term “Ludonarrative Dissonance” in a blog post titled “Ludonarrative Dissonance in Bioshock.” In the post, Hocking criticizes *Bioshock* for trying to comment on the nature of gaming (with a plot about the limitations of player’s free choice, but a gameplay focus on acquiring tools to progress) without having gameplay mechanics to support it. As he writes, “To be successful, the game would need to not only make me somehow adopt this difficult philosophy, but then put me in a pressure-cooker where the systems and content slowly transform the game landscape until I find myself caught,” where the story’s critique of Randian Objectivism would reveal its untenable nature by having gameplay that engaged and challenged an exclusively self-interested worldview. As Phillip Penix-Tadsen writes in “Latin American Ludology: Why We Should Take Video Games Seriously (and When We Shouldn’t)” on this conflict between the two, “The debate between narratology and ludology has essentially been resolved for experts in game studies in favor of the latter” (177). At the same time, Penix-Tadsen emphasizes the issue of the content of game narratives, focusing on depictions of Latin American countries in video games. In particular, he points to the cinematic first person shooter *Call of Duty: Black Ops* as a blockbuster video game that depicts the player character as an operative in Bay of Pigs, tasked with assassinating Fidel Castro. In *Black Ops*, “Latin America is inscribed within what I would call a broader geography of chaos, an imaginary *Call of Duty* world in which the Brazilian favela is a virtual neighbor to war-torn Afghanistan, and the streets of Havana,” (182) where labeling the setting and art assets as real locations in Latin America creates a real
problem. At the same time, Penix-Tadsen’s assessment of Call of Duty relies on its gameplay, the directed violence of the shooter genre. While the narrative elements are important for how to read a game, core themes of a game are revealed in gameplay, not in the assets of the game, whether it is found in the joy of exploration and passage, the director’s guidance of an unfurling universe, or the simple ambition to see numbers rise, which McLuhan compared to the same emotion beneath the speeches of Hitler (Loc 2057).

Discussing Ludonarrative Dissonance raises the question on whether the “narrative” that seems to be at odds with the gameplay deserves any special privilege. A video game has a narrative that comes from the ludology. Unlike Shivel, who assesses “If McLuhan is correct, and ‘the dominant technologies of one age become the games and pastimes of a later age,’ then narrative itself is in big trouble—that is, if future games ever acquire richer narrative,” (207) I don’t see video game narrative as a threat to traditional forms of narratives as the discussion of ludonarrative dissonance demonstrates. Formal discussion of gaming often privileges the objectively present elements of the game as an effort to hew towards a common ground for the speaker and listener. The reception of games such as Bioshock or Spec Ops: The Line, which emphasize the games use of traditional elements of narrative, shows that, despite critical assessment of games in general slanting to ludology, for specific games, narratology is still foremost considered for individual games. Brendan Keogh’s Killing in Harmless: A Critical Reading of Spec Ops: The Line looks at the aforementioned Spec Ops argues that, for the fairly limited mechanics through the game, “even if your actions remain the same mechanically,
tonally they change drastically” (loc 436). The ludology are to take a backseat to the game’s, admittedly celebrated, narrative.

But the gameplay of a game is central to a playthrough. How a game plays is the angle by which different playthroughs are created. Different levels of skill and different interests in how to play not only create different perspectives and approaches to the work, they create different, possibly even wildly different playthroughs. There is an objectively different experience created from how the player plays. Bainbridge and Bainbridge see, “Robert K. Merton’s (1938) influential theorie of anomie, that specifically draws the analogy between competition in life and in games,” in game playthroughs that make use of glitches or other approaches to the game that use methods unintended by the designers. Particularly, as “innovation, the mode of adaptation in which an individual continues to seek the goals

![Video screenshot](image.png)
Youtube video of JBLNug1126 glitching through a door in Legend of Zelda: Ocarina of Time in order to skip a significant chunk of gameplay. By fitting the player avatar “Link” through the door’s physical model, the avatar is forcibly passed through, showing the “inside” of the door.

valued by the society but employs nonstandard means, thus violating societal
norms," (72-73) where the player is able to, take the metaphor of the branching paths of a game written on a board, draw his or her own lines to reach from point to point.

As the formation of video game narratives relies on the player’s individual playthrough of the game, I should note that the multiple means of playing a game come from the player’s personal approach to gaming. Richard Bartle, the creator of the original MUD, or Multi-User Dungeon, a multiplayer, online, text based form of gaming that was the precursor to the MMO, or the Massively Multiplayer Online games, writes in “Hearts, Clubs, Diamonds, Spades: Players Who Suit MUDs” about the four types of players, identified with the suits of a deck of cards, he sees in gaming. Interestingly, he initially approaches it by hypothesizing what pastime each type of player sees MUDs most like: games (“chess, tennis, AD&D”), pastimes (“reading, gardening, cooking”), sports (“huntin’, shootin’, fishin’”), or entertainment (“nightclubs, TV, concerts”). From there, he classifies players into groups, achievers (games), explorers (pastimes), killers (sports), and socializers (entertainment), with their suits being diamonds, spades, clubs, and hearts, respectively. Achievers want to achieve, for points, story completion, acquiring items, or just climbing the next hill. Explorers “delight in having the game expose its internal machinations to them,” exploring the mechanics and testing the boundaries of the game, both in terms of code and in terms of playing in the in-game world. Killers and Socializers are both interested in other players, either in “imposing themselves on others”¹⁰ or for

¹⁰ While the term “killers” implies hostile, player-versus-player content, Bartle does identify that there are, rarely, players who play to impose themselves on others nonviolently. Bartle calls it “Busybody do-gooding,” but more specifically, it could
interpersonal relationships, with the game as a “backdrop.” For Bartle, this is all taking place within the same genre of games, the MUD, and usually within the same games of that type, but with the different angles players approach the same game. I should note, as seen with Feldon and Kafai’s investigation of Whyville, certain games fit better with different types of players. Player use of the game focused on achievers and socializers, since there weren’t many elements of the game that engaged in testing the boundaries or antagonistic player relationships to appeal to killers and explorers. The boundary between the two blurs a little with Whyville—players investment into their avatars’ appearances could be to show their wealth as achievers, or as part of how they present themselves to their social group. And naturally, a game without online elements would not have many options or much appeal to a killer or a socializer. It’s not a fixed philosophy to the player, though; it’s not something inherent in how each player approaches every game. Different people can approach different games, even within the same genre, with different approaches, and someone’s approach to a game can evolve as the playthrough goes on.

As a personal example, I remember my younger brother playing UFO: Enemy Unknown, a game based around defending the Earth from alien invaders, where he was at a failure condition—the “nations” funding his army had almost all ceased funding him, over time, yet he managed to avoid losing the game by finding an alternative cash flow, using the black market to sell parts stolen from downed UFOs and weapons he manufactured at his home base. The game didn’t end; there was no take the form of a player who enjoys playing the game as a teacher, helping newer players with guidance and advice, wanted or not.
“game over” screen to load for him, since he was still capable of financing the
defense of his one corner of the Earth. But now he was playing as a pirate instead of
a defender, prioritizing the looting of trespassing alien ships, a shift from an
Achiever, trying to beat the game, to an Explorer, testing how far he could leave the
boundaries of what the game expected him to do.

Genre

At the same time, I do note that games are not entirely open to the player.
Different types of games have different content, programming, and interfaces,
differences on the genotypic and phenotypic level. Every individual playthrough
creates a unique gameplay experience, which is only connected to the individual
player. But, as Bogost noted in his critique of perceived freedom in GTA3, the
experience still has to exist within the possibilities permitted in the genotype.
Without altering the genotype, the player avatar cannot, for example, enter a
building that does not have a pre-designed entrance and interior. A player could
 glitch through the walls of a building putting them inside the 3D object, but without
extensive mod use, there wouldn’t be anything inside the building. This creates the
common ground between games that enables parties in a discussion to recognize
the other’s experience. Video games, like most media, are grouped together by these
commonalities into genres, whether by visual similarities or their tone, or by
gameplay (Platformer, Side-Scroller, Rhythm Game, First-Person Shooter), games
are often grouped by visual similarities or their tone, closing off potential
comparisons. In Bogost's assessment of GTA3, he comments on the “freedom of
continuous movement” (48) which, I would argue, is an invitation to compare to other games that are or are not designed for that motion. *Super Mario 64*, a game with as much a different tone as can be found from *GTA3* is still a game about that exploration of continuous movement through a three dimensional space. The means by which both games interrupt, delay, and “gate” (using means to force the player to path through a regular area across different games) that motion is the fundamental element to what those games are, more so than the plot of a satirical crime saga or Mario’s primary-colored design. Jones writes in “Performing the Social Text” on an opposed connection, using the, at the time, about to be released game *Spore*. Writing on how the game plays, Jones writes that playing *Spore* “feel[s] more like George Lucas than Luke Skywalker...the *Spore* player is part director and part metaeditor in multiple interfaces” (286), as the game involves creating a new species and guiding it through evolution and civilization. Jones’ note that the player works as a director leads to the question of what players *used* to do that wasn’t directing. I understand the Lucas comparison, to highlight that the game doesn’t center around one central avatar-figure, but gameplay without that aspect has already been demonstrated, such as in the earlier-mentioned *Age of Kings*.

The means of discussing a game are bound to these genre elements. The various means by which gams make use of avatars makes a good example for how this matters. The example of *Age of Kings* as a game removed from the avatar figure is one example; trying to identify such a figure achieves nothing. The “avatar,” as the point where the player interacts with the game’s interface is nothing more than a cursor, with the only actions of “click” and “move.” However, as Golub noted,
looking at avatar identity in a game like *World of Warcraft* has clear significance, with its personalized, social characters. While Shivel comments on character choice in terms of class abilities, she also writes about the reaction she received from her choice to play as a female dwarf.

“Wow, a female dwarf”—I get a lot of that in response to my Bruesa, with her low center of gravity that looks just right for an axe-wielder, her two swinging braids and amusingly deep bosom; but she is unusual... I always play dwarf characters because I like them and prefer the rugged and vaguely Nordic dwarven aesthetic and world-view to those of the creepy elves, dull fairy-tale humans and irritating gnomes (209).

Shivel’s Bruesa appeals to her interest in the character’s look (both as a comic and capable figure) and also the in-game narrative associations. The Nordic aesthetic only really matters to the dwarf-areas of the game, not to the actual clothing of the character. But those elements are important to how Shivel designs her character, and that’s an element of how she plays *World of Warcraft*. This has a still different significance compared to a game like *Call of Duty: Black Ops*, whose avatars are characterized more by the game’s script and art design, and are much less personalized. Here, characterization is seen as separate from play, the character is a highly skilled covert operative, even if the player isn’t capable of performing to that level of simulation. As Penix-Tadsen notes, *Call of Duty* is a game he classifies as a
“Contra” game, where the avatar is the heroic American male soldier, for which the real-world locations are “turned into settings for the leisurely pursuit of play” (182). However, using the real world situations in these “pursuits of play” take on different meaning to the players experience in these simulations. As Marcel O’Gorman notes in “Angels in Digital Armor: Technoculture and Terror Management,” in Call of Duty 4 (a distinct game from, but in the same line and aesthetic as Black Ops) the character avatars of the multiplayer mode, in their continuous sequence of dying and returning to the battle, arguing that “computer games can simulate risk very effectively, but they cannot provide the intensity of risk experienced in the physical world when the body is situated in a precarious position, be it on the battlefield, on the city street, or in the classroom.” As O’Gorman notes, the trappings of battle is still present, without the actual risk of combat, creating a strange narrative of violence without meaning. The act of killing in multiplayer video games is as removed from the actual experience of war, it’s not much different from the gameplay of increasing numbers found in Cookie Clicker. Despite the vast differences between the two games’ narrative elements, these gameplay realities have more impact on what a game is than flavoring of what the numbers are.

Press Start to Play!

11 As opposed to a “Tomb Raider” or a “Luchador” game in how it presents Latin America. This breaks down to: as an opponent (contra) to the American Hero, a location to “pilfer the symbols and tokens of ancient cultures to create a two-dimensional backdrop to gameplay,” or those who struggle (luche) to present a more accurate Latin American culture, respectively (181).
The title of this paper, “Press Start to Play” comes from a quote from Super Mario 64. I chose that title because it reflects a core element of what a game is, but also because I see Super Mario 64 as a very remarkable game and example of what a game can be. Despite the games age and relatively simple plot, limited graphics, and the glitches and exploits that come from its experimental approach to three dimensional platforming, I do believe that, as a game, it shows a better understanding of how to use gameplay in service to a narrative than many contemporary games with extensive narrative elements. But return to the quote, “Press Start to Play!” It is one of the few words Mario, the game’s protagonist says, and it occurs in the “Select” screen, an intermediary between turning on the game system and playing the game proper, where the player can select save data or adjust some of the game’s settings. While this exists outside the game’s “plot,” it should not be said, however, that this is not part of the game, or that it does not contain gameplay. What catches my attention is a small, largely unannounced feature—using a cursor shaped like a hand for an interface, the player can click and drag on

\[\text{12 Buttons are pressed to “play,” an unintentional double meaning that suggests both pressing the button to start the game, and pressing buttons as an act of “playing.” It also comes with the implied contrast to “press play” on, say, a DVD player.}\]
Mario’s face to deform it. It has no narrative purpose, or is in any way integral to the

game, but it was there and I used it when playing the game. When I first played

Super Mario 64, quite possibly the first video game I ever played, I remember

sometimes turning on the game just to fiddle with Mario’s face for a while. No effect

is saved, and there is no reward beyond play. Manovitch highlights the loop as a
core attribute of New Media, and disfiguring and returning Mario’s face certainly

“[provides] a cheap (in terms of bandwidth and computation) means of adding some

signs of ‘life’ to their geometric-looking environments” (317). It

is pure interaction and response,

exclusively an exercise in the

player’s ability to influence the

screen. This feature is more than

a curiosity, though. This is the

only moment in the game where

the player avatar is not Mario

acting on the world, but rather, a gloved hand that acts on Mario. It suggests to

players the completeness of their influence. They play in the world, but they can

also play on their own avatar.

Within the game that comes after pressing start, a greater sense of structure

becomes apparent. Super Mario 64 still features Manovitch’s loop structure, with

loops within loops wherein completing sufficient loops would loop again to open up

new loops, organized around gates. There are points throughout the game where all
potential paths have to be threaded through certain moments—to beat the game, Mario must grab keys, which require him to beat a Bowser (the antagonist) stage, which requires a certain number of collected stars to open the necessary door. These portals, whether in the form of literal portals and doorways or items like keys, provide the game’s exploration aspect, the push forward for new sections and new levels. The stars show another sort of gating, as Mario can grab any available stars to fulfill the requirement, so long as he has enough, but must always fight the same Bowser in any play through. These collectibles, whether as coins, red coins, stars, or keys, work as rewards and gate unlocking. The only function of a coin is receiving a star if 100 are found in a level, same with 8 red coins. Stars and keys, which, when found, serve as the endpoint to the level, unlock doors, which lead to more coins, more stars, and more keys, until the ending. Collection, as reward, drives exploration. A third gate comes into play with unlocked items, such as the wing cap. Mario can hit a switch that permits him to use the item in previous level, which may be necessary to obtaining specific stars as well as opening new approaches to the level. This encourages returning to old levels and aimless play with new approaches to the level and new means to interact with the avatar, such as flight. All of these gates indicate the journey of Mario, the open ended exploration and the pointed direction of the progression of the levels through the “hub world” (a quasi-level that connects all the levels) of the castle. It is a game that echoes Bogost’s pleasure of continuous movement, so much so that there are notable ways to complete a playthrough ordered around bypassing the gates to best the game.

Bainbridge and Bainbridge’s study of cheats in games found that Super Mario 64 can
be beaten using only 16 stars, instead of the usually necessary 70, by exploiting a "back ward long jumps" that enable Mario to glitch through gates, such as locked doors. “Apparently, if Mario accumulates enough speed he can pop through any barriers, including walls and the endlessness barrier. Aggressive use of both glitches brings Mario to the final battle” (69). This strategy is popular with speed runners, as a means to beat the game, as Myles Bukrim’s 17 minute, 31 second playthrough of the game demonstrates (Speed Demos Archive). *Super Mario 64* is a game that foremost encourages pursuit and exploration, with the objects of the games as hazards and goals to encourage and challenge the player’s approach to it.

Gameplay is what makes a video game notable; it is what a game is made for. No other media allows the same perspective gameplay creates with its form of spect-actors, where a player has unparalleled flexibility in shaping themselves and their interface to better facilitate their aims in playing. While every player creates his or her own, individual, unique playthrough, it is not necessarily an absolutely personal experience. While there exist games that can be played by more than one person, the larger example of this is in how games can be related to others, much like how a viewer can relate his or her personal read of a film to another through speech or writing, but unlike film, a player can record and show unique playthroughs of a game directly to other viewers. Through media performances such as livestreaming, casting competitive games, or Let's Play, there is more that can be found through observing the game.
Observing the Game

I believe that observation reveals fully reveals how significant interactivity is to the video game medium, and with it, what makes gaming unique as a medium. Once the game has been played, it only exists as an experience. The vast potential permitted in the genotype has become a single, linear playthrough. However, the experience of the game is not necessarily finished at this moment. To be played, a game must be engaged, but it does not need to be participated in to observe. Observers do not gain the full benefit of gameplay. They receive a media entirely different (something more akin to television or a Youtube video), but what’s there is something built off of the player’s experience of the gameplay. And there is, evidently, some engagement that comes from gaming even without playing, as can be seen in a Reddit article titled “I just give them controllers that are not plugged in and then they play like this for hours” from December of 2012 with an attached photo of the author, Reddit user somecallmemike, of the post with his two sons operating the controllers while observing the game. Whether they were aware the controllers produced no inputs isn’t specified, but the significant matter here is that it stands as an example of a game being appreciated without experiencing the effectiveness of the inputs. Discussing the element of observation removed from the element of gameplay can go towards just a discussion of the game’s phenotypic elements, but that isn’t accurate to what the game really is. In order to convey something about the gameplay experience to another, whether for social purposes, reviews, or critical analysis, the game has to be engaged on a more comprehensive level.
In order to do so, I intend to look at specific instances of media that have been created out of video game playthroughs, which, I believe, reveal a better means of understanding and engaging video games. Bogost writes, “The videogame phenomenologist is not he who seeks to understand how a human player perceives the sounds and images and tactile sensations that comprise the videogame playing experience, but rather he who seeks to understand how the myriad objects that constitute videogames relate to one another,” (32) setting out that the necessity of engaging the genotype and phenotype, in tandem with the playthrough experience. Yet, even trying to engage as much of the potential brought up by the cybertextual elements (a discussion of the options the game offers to the player as a means to play the game) is still insufficient for that purpose. To best illustrate this, I start with examining the problems that come with remediating video games into other media, in writing, speaking, or viewing them, all forms that cannot replicate the gameplay experience. Then, by looking at casting competitive games, either in sports or in video game tournaments, I see how attempts to connect the observer to the players has developed and what unique elements exist for competitive video games. This all leads me to an examination of the Let’s Play phenomenon, where people record themselves playing games, with commentary, for audiences over the Internet. Let’s Play’s can be broken down into the communities that consume them, whether for observing skilled competitive play, a formal exploration to show off all the elements present in the game, or using the player or LPer’s personalities to present an entertaining video of them playing the game. All of these examples reveal the necessity of gameplay to the game. The use of commentary attempts to replace the
interactivity by creating the illusion of closeness to the actual gameplay, but in addressing this lack, that these formats reveal themselves to be a better means of showing and commenting on games than summarizing phenotypic elements.

The Observation of Games

I must begin with an examination of how a video game being repackaged into something other than a game specifically affects the final product. The primary issue is that, when a game is observed, the gameplay is immediately in the past. Playthroughs uploaded to the Internet can be seen years after the game was played, and even watching a tournament streaming live still has latency delays. Even in the example of watching over someone’s shoulder, the viewer isn’t grounded in the action via inputs like the player is. As a result, the many potential outcomes possible in the genotype cannot be observed, it is as fixed and certain as watching a film. Effectively, a game is “flattened” by observation—the complexities of the genotype are belied by the phenotype, since the viewer only experiences the audio/visual elements, instead of the responsive experience of gameplay. This leaves a less-than-interesting “summary” of the experience behind. Almost all the audio, visual, or text elements in the game are shown,\(^\text{13}\) showing the importance of the actual “gameplay” of the game. Certainly, a viewer could estimate what looks “fun,” or the player could say what he or she does or does not enjoy in the game itself, but, much like how watching a car drive gives a limited perspective on the car’s performance, watching a game is not quite a substitute for playing one. Worse,\(^\text{13}\)

\(^{13}\) Interestingly, many Let’s Plays strive to record as much of a game as possible, a “full” or “100% completion” run.
as a game is designed to be played, a challenging sequence of actions might be thrilling to play, but fairly tedious to watch. That footage of a video game’s gameplay makes a poor movie isn’t much of a statement, but it does bring to mind that there are elements in a video game that aren’t present in a film. Manovitch talks about “the myth of interactivity” in his description of what digital media isn’t, distinguishing between physical interaction and psychological interaction, or the distinction between the player’s input into the video game and the viewer’s process of “filling-in, hypothesis formation, recall, and identification, which are required for us to comprehend any text or image at all” (57). While a playthrough of a video game has both elements, other digital media only really have the second, and making a video game a subject for film, television, or a document won’t change that.

And that’s where the second problem emerges. It comes from what I’ve spent this paper establishing—gameplay is significant to games, and removing the interactivity changes the product. Consider discussing a game through speech, the player talking with a friend about the experience of a recently-played game. Such a description of the experience wouldn’t focus on the specific mechanical exchanges, or even a summary of the action. As discussed earlier, the game’s ludo-narrative would come through; perhaps in a description of a particularly challenging or enjoyable section, but the description of the game itself wouldn’t feature a description of the sequence of inputs used to achieve that performance. To return to Joohan Kim’s “Phenomenology of Digital-Being,” when playing a digital game of pool it is not a matter of striking something representing pool balls on a surface simulating pool balls, but effectively the real thing. His assessment of the action in
games looks exclusively at the actions within the game, without concern for the inputs. My efforts to do otherwise, with my personal examples so far in this paper, as attempts to translate the experience of the video game into text, show some of the limitations of the attempt. Descriptions of gameplay are underwhelming; they’re too cumbersome to match the fluidity of actually acting in the game. There’s a flaw in this process.

The problem that comes with observation is that it is the remediation of a game. It takes the form of a video game and runs it through older media, into print, television, or some other media intermediary between the player’s gameplay experience and the observer. It’s not the same as looking over the player’s shoulder. To return to Bolter and Grusin’s *Remediation*, while remediation is usually viewed as a chronologically linear, forward process, where older media is remediated by the newer forms, “in this geneology, older media can remediate newer ones” (55).

Putting a video game into text or film reveals a limitation in the video game medium: without the interactivity, the game is now lacking in immediacy. In Betty Kaklamanidou and Maria ilia Katsaridou’s “Silent Hill: Adapting a Video Game,” they look into the process of translating elements from a cinematic video game, the *Silent Hill* series, into film. Here, the film takes no particular attempt to convey the experience of gameplay\(^\text{14}\), but rather, the plot and aesthetics of the game’s setting. Kaklamanidou and ilia Katsaridou write

\(^{14}\) While the movie *Doom* did contain a scene from a first-person POV attacking waves of monsters with a chaingun, but that was still only an adaptation of the game’s aesthetic, not an attempt to suggest interactivity.
It can be therefore claimed that although video gamers enjoy certain freedoms regarding the paths they can take the narrative, they also face certain restrictions that result from the manufacturers who provide a certain number of alternative scenarios. If one combines the fact that gamers are in a way constrained by the game’s design mechanism with the complex narratives of contemporary video games, their screen-based characters, their inclusion of heroes and villains, it can be argued that video games have many affinities to the medium of film (267).

What stands out to me is the notice is the means by which the video game, in remediating cinematic elements, is better suited to be remediated into film. But Kaklamanidou and ilia Katsaridou’s assessment of the films focuses on the “constraints” to gamers, the universally common elements of the phenotype, in the plot, aesthetic design for the atmosphere, and the characters—in particular, they note the difference created by changing the gender of the protagonist from a man to a woman. By their assessment, “since places, characters, and storylines can be transported from video games to film very easily, the attention of a video game film adaptation study should focus on the decisions the filmmaking team made during the ingredient selection process” (273). Film adaptations of video games are really film adaptations of the intellectual property (IP) of games, not so much the “video game” of the game.

Translating a game into discussion, text, or film reveals the importance of gameplay in how poorly it captures the actual experience of gameplay. Other means
of conveying a game become necessary, and I see some currently existing media that has shown some success in these aims. These efforts are mostly occurring with somewhat fringe communities, though increasingly less so, even to the point of becoming more than hobbies and actually being legitimately professional efforts. Remediating video games into Internet videos, using live streaming or uploading prerecorded videos onto hosting sites, show some promise in trying to capture the actual elements of gaming.

Casting

I believe the difference comes from a supplement, the addition of something to restore the sense of playing the game. “Casting” video games presents one potential means of reestablishing that connection. It has the advantage of actually being familiar to viewers, as analog, or real-life, gaming already has considerable history in being observed instead of engaged. A football fan is often not a football player, and there exists an extensive support structure to support the viewing of such games. However, watching an NFL game is slightly a different experience from watching a competitive video game. The perspective is different between the two, the video game viewers can see from the same perspective as the player, they have access to the same amount of directly visible information as any individual player, as opposed to football or soccer, which can only be perceived through various cameras strategically placed above the grounds of the game. However, this difference introduces new problems for watching a competitive video game; while the viewer of a football game can make use of that broader view to watch the game
play out and see the narrative of the game from a perspective that is clearly distinct from playing, a video game needs an element of guidance to compensate for its falsely apparent immediacy. Due to difference between media, what makes playing a game enjoyable is not necessarily transmitted in watching a game; it is necessary to add guidance to the process through sportscasters. They serve both to highlight and outline important details in the play, but also to give the listener a sense of involvement and presence, the elements lost by not being present in the gameplay. As Aarseth notes that Dungeons and Dragons might be seen as something similar to an oral cybertext (98), then football might be seen as an athletic cybertext (Aarseth clarifies on the very first page of Cybertext that “the concept of cybertext does not limit itself to the study of computer-driven [or ‘electronic’] textuality; that would be an arbitrary and unhistorical limitation”), constructing its own narratives from the rules and structures of the NFL. While an NFL game, as I argued earlier, is a distinct form from a video game in how it executes its rules, the caster takes up a similar role, in terms of styling, in both media. Casting is not simply relaying events via television or radio, the caster substitutes for an element of the cybertext lost in the recording. Frank Gifford, former football player and sportscaster, describes his experience going from player to caster in his memoir, The Whole Ten Yards, and the difficulties in his first days sportscasting, freeform without organization.

Sportscasting also serves as a means between the audience and the game. In “Locating’ the Nation: Football Game Day and American Dreams in Central Ohio,” Danielle Lindquist writes about how the crowd’s viewing of the football game as drama builds the identity of the community. This relationship between the game
and the audience also works backwards, where the fans develop an understanding of the game. An instance where as “a result of the new scrimmage rule, however, teams could maintain a monopoly on the ball if they did not kick or fumble it,” (453) led to a change in the game that caused a fan outcry large enough to create a change in the game’s rules. Video games are no different. Even without having nearly the same level of awareness or investment as professional sports, competitive video games work along the same methods for viewership and presentation.

Competitive gaming, or “e-sports,” is not as established or recognized as professional athletics. However, the competitive scene has been around long enough to establish its own identity and structures, and a measure of legitimacy, in a variety of genres. In “Rise of the E-Sports Superstars,” Alex Bellos reports from a competitive Starcraft tournament held in a stadium used for the 1988 Seoul Olympics, with a crowd of 30,000. With broader appeal, more has been invested in the quality and coverage of casting games. I’d like to focus particularly on the game DOTA 2, as it has developed a well-established casting apparatus, with regular tournaments, teams, platforms, and game casting identities. There’s even a formal international championship sponsored by Valve, its creator studio. DOTA has a fairly simple arrangement, with ten players, divided between two teams, each selecting a particular character, or “hero,” with their own set of abilities, each trying to reach their opponent's base at the other side of the map and destroy their “Ancient,” which ends the game. However, as a ten-person action/strategy game, it needs the supplement of the caster to guide the action of the game to reduce the scope of the viewer's perspective into something more manageable. Since the game
takes place over a larger area than the in-game camera can cover (there is no total bird’s-eye view), casters work to guide the game camera to direct the viewer’s focus. With ten players on the field, each one able to move to any location (though generally following recognized tactics) at their own interest, the casters have to identify what they want the viewer to be “looking” at. Casters can also cut between the action in the game interface and live video of the casters themselves to provide commentary. While in general, the camera will remain tracking what area of the game seems to have the most relevant action, in between matches and pre-match moments, focus can go to the casters to discuss what happened or anticipation of future events. Images and text are often added to the game, containing information
about the characters, statistics, player and team records, and other information that the casters find relevant to the scene. As I said earlier, for casting, there is not much difference between a digital and analog game, they work under the same concepts as can be seen with sportscasting. However, looking at how casters remediate a video game into something for public watching establishes concepts for consideration on other means of remediating games.

Casters give additional information to the listener, particularly on elements such as the metagame (the elements of the game that rely on the players knowledge of the other players), ultimately to immerse the viewer in enough information to attempt to restore the viewer's sense of immediacy to the game. Bruno Carlucci, popularly known as “Statsman Bruno,” is one of the more prominent casters of professional level *DOTA*. In an interview with Johan Järvinen, he talked about his experiences for both the 2012 and 2013 *DOTA* International Tournament, where he focused on providing statistics to the game. In the interview, Bruno makes the connection between his former work as a software consultant and his current job, but not so much in terms of statistical modeling but in terms of his former customers. He previously contracted with football clubs in Argentina, leading him to make a connection between sports and e-sports.

Football players, which, surprisingly, are not too different in personality from pro E-sports players! Our job forced us to interact with players, teams, tournament organizers and player associations, so I think that made it so understanding the E-sports world came naturally to me.
From Bruno’s perspective, that is, as an expert in statistics, the difference between
the form of a digital game and a physical one is not particularly significant.
Interestingly, he also mentioned his other efforts in casting the game, seeking to add
small skits between matches and other means of showmanship. Even for a caster
directed more towards the purely technical side of things, casting is still for the
entertainment and engagement of the viewer.

The metagame, the discussion of the elements of the game outside the
bounds of the game itself, plays a significant role for casting. This opens e-spots to
something analogous to the “armchair quarterback.” The cybertext of a competitive
game incorporates the social, multiplayer element, which, unlike gameplay, is not
exclusive to the player. The viewer can participate in estimating another team’s
comparative abilities, general strategies, and choices, though not necessarily with
any better information or conclusions than what the player works with. In
particular, looking at the evolving rules of the game, both in the genotype and in the
popular consciousness, changes which strategies will continue to be effective in
competitive play. While information can come from various sites, such as the DOTA
subreddit or DOTAbuff.com, the casters take on a role of informing viewers about
this level of the game. Usually, this takes the form of the caster sharing his or her
familiarity with the players in the game, remarking on their particular abilities and
weaknesses, but it can also take the form of statistics, as a more concrete example of
this phenomenon. In his interview with Järvinen, Bruno also engaged the matter of
how statistics were effecting the metagame, whether in bans (each team is
permitted to ban five characters), match ups (Bruno particularly emphasized the
“winrate” between characters, the win/loss percentage between any two individual characters), and strategies of how to control the field, saying, “The whole idea of using more advanced statistics are to get the same kind of advantages but from things that aren’t too obvious,” which suggests, as most teams aren’t made of dedicated statisticians, that the popularity of statistical analysis in casting was changing the perspective in the competition.

The characters of the various players, their personalities, abilities, and interests, are a significant element of the metagame. DOTA 2 is a team game, and the coordination of the team is a significant factor. While teams function as actual business entities, with sponsorships and paid positions, the formal organization of the teams is less structured than professional sports teams. As a result, players can leave, join, or disband their old teams without as much effort, and the evolution of the metagame depends heavily on the players’ decisions, both in the game and in terms of strategic thinking. Returning again to statistics as an example of the metagame, in a December 2012 fan discussion of professional DOTA, Reddit user Bryan “k-poptosis” Heren, an official caster for the 2013 International championship, proposed a statistical model of calculating “carry efficiency,” as an “attempt to quantify how efficient a carry is at doing just that, by measuring how well they are at getting kills and limiting deaths at a given amount of farm.” A carry being a team role for the characters (and the players who specialize in those characters) who perform better later in the game, as they have to be “carried” by

15 Interestingly, k-poptosis was entirely silent as a caster. His contribution was to provide “pop up” statistic notes, adding additional background information for the viewers.
their teammates to reach that point, and farm being the amount of gold (which is used to purchase items and as a measure of the team or an individual player’s comparative progress in the game) a character is able to generate from fighting non-player enemies. This measure of ability, then, looks at players who specialize in roles that require a lot of gold to be effective, and judges them on their rate of acquiring gold per minute and their respective kill/death ratio, as well as when they assisted in an ally getting a kill. Or more specifically, “Carry Efficiency = ((Kills + (Assists/3) - Deaths) / GPM) * 100,” and then ranking the major figures of the game by their score. K-poptosis argues, “this stat does a decent job of sorting out who can carry the best for their money. What I think it’s best at is showing how well a player can quite literally carry his team to victory when given average gold input,” but what does this matter to the viewer, who is, most likely, never going to play with or against any of the players thus ranked. There would be, admittedly, value for anyone who gambles on e-sports¹⁶, but that still is a minority of k-poptosis’ viewers. The value of these stats don’t come from the viewer’s sense of making practical use of these numbers, but in creating an atmosphere where the viewers feel as though they are involved with the same decisions and engagements as an actual player. The stream of information, whether in statistics or stories from the team or players, which comes through the metagame restores the viewers’ sense that they are part of the game.

Let’s Play

¹⁶ Which would be remediating a game into a different game.
Let’s Play, or “LP,” being a not particularly well-established or well-known form of production, could use some introduction. It is, at its simplest, the person playing the game recording gameplay and, usually, adding some commentary. Michael “Slowbeef” Sawyer, in his Tumblr post “Did I Start Let’s Play?” (he concludes that he did not), gives a brief outline of the early history and potential origin of the phenomenon. “The reason ‘Let’s Play’ is kind of a misnomer (nowadays, it’s really ‘watch me play’) is that the Oregon Trail LP harkened back to a time where the person playing the game would actually attempt to include the audience. It was actually ‘let us play,”’ a statement which shows the evolution of the Let’s Play coming from a detached form of gameplay (using internet forums as an interface to democratically play a game17) to something more in line with the elements of casting. Even as LP shifted from playing a game to showing playing a game, the Looking at Bolter and Grusin’s statement that remediation always seeks the flaws is the old media that is shown as “inadequacy is represented by a lack of immediacy” (60). For video games, a loss of immediacy is particularly severe, on account of its nature as an interactive medium. The flattening effect of turning a playthrough into footage is counteracted by the commentary added by the Let’s Player (LPer), who is generally the person who played the game, either commenting live or adding an

17 An interesting adaptation on this means of interface would be Twitch Plays Pokemon, a live streamed game “that lets you play Pokemon with a lot of other people by typing commands into chat” (http://www.twitch.tv/twitchplayspokemon). With up to a hundred thousand active participants, this is used mostly for comic effect as coordination becomes extremely difficult. However, the game is still playable, the collective efforts of the player-viewers managed to complete Pokemon Red, and a gameplay experience is being created even if the player has an extremely limited ability to perceive the game’s response to their inputs.
audio track in post. Other commentators can be brought in, but generally, the player is present, recounting the gameplay experience, or commenting on other things, while watching the playthrough of the game. Looking at different forms of Let’s Play, whether as an LPer commenting over a playthrough, a speed run, or a live stream of the game, shows how the form makes use of different ways of restoring that immediacy to the viewer. From there, looking at a few different communities of Let’s Players, from the Something Awful forums, Youtube, or the chat section of a live stream, shows the ways by which LPs are guided by those viewers, seeking immediacy by turning LP into a communal activity, keeping the title “Let Us Play” relevant.

Observing different approaches to Let’s Play explores how different Let’s Players make use of the supplement. Thomas Hale’s “From Jackasses to Superstars: A Case Study for the Study of Let’s Play” argues that the primary reasons for the appeal of Let’s Play is for documentation, both to attempt to encompass as much of the game’s potential content as possible or just to document a specific performance of a player. Hale in particular highlights the development of LP on the Something Awful forums, and in particular, he looks at the Let’s Player Vicas’ attempt to beat Super Mario 64 only using his feet to manipulate the controller. “So we see how LP is a way not just to document games – Vicas’s project does indeed show off every part of Super Mario 64 – but to add a new possibility to the ‘range of potential playing’ (Newman 2013: 62)” (11). This quote reveals one of the issues with documentation in Let’s Play—is it the documentation of the game or the specific playthrough that matters? If it is the game being documented, then that raises
questions of legal ownership over the properties used. IGN, in an article titled “Nintendo Enforces Copyright on Youtube Let’s Play,” covers an issue where game producer Nintendo, the copyright holder for Super Mario 64, started claiming ad revenue on Let’s Plays made with their content, defined by Nintendo as “videos featuring Nintendo-owned content, such as images or audio of a certain length,” (own bolding) emphasizing the objective art and audio assets of the phenotype rather than the actual dimensions of the playthrough. At the same time, other companies are moving towards it—the Xbox One, a contemporary gaming console boasts a three-step process to recording up to five minutes of gameplay footage, or “you can say “Xbox, record that!” to immediately capture the past few seconds of gameplay at any time” (Xbox Support). Phillip Kollar at Polygon reported on a presentation at the Game Developers Conference by Ryan “Northernlion” Letourneau, a popular LPer, on how LP presents an opportunity for independent game developers to advertise and present their game to large audiences, citing the considerable audiences of some prominent LPers. I would argue that, as LP presents an avenue better suited for presenting gameplay than written reviews, the videos are simply a better option for advertising a game than traditional means. Still, the exact legal understanding of what a Let’s Play is made of has not been settled, and how different companies understand their relationship with these smaller gaming communities is also yet to be decided, but this is an important acknowledgement that there is an uncertainty on both the “ownership” and “content” of a Let’s Play as a cybertext. It may just be overprotective corporate litigiousness, but if a Let’s Play is seen as a threat to a sale, that the recording of a
playthrough can be used as more than just a supplement, as a full replacement to play, these means of remediation are then dramatically more effective than I have accounted them.

There are also elements of mastery and competition expressed in certain approaches to Let’s Play. The aforementioned speedrunning community creates videos to document their attempts, and the record holder is hosted on Speed Demos Archive. These videos are generally much longer than an LP, and as a result, tend to be silent. The focus is not on suggesting the gameplay experience to the audience, but to demonstrate the player's various techniques used to save time, the general strategy used, or the player's personal skill at the game. However, not all speedrunning videos are without commentary. Awesome Games Done Quick is a biannual (with Summer Games Done Quick) event organized by Speed Demos Archive where speedrunners meet to do a live, publically broadcasted, ongoing series of speedruns of games for charity. It was fairly successful, with the SDA reporting “over $1,025,000 for the Prevent Cancer

Footage of a four-person race of Super Metroid. The two center screens show the players at front and the audience behind them.
Foundation. As is tradition for us, this more than doubles last years number” (Speed Demos Archive, Jan 16th, 2014). For AGDQ, the broadcast contains a live feed of the game the player is attempting to speedrun, but also has a small picture-in-picture from a camera aimed at the players and their live audience, picking up the audio of the room and the player commentary. Much like casting a competitive game, the commentary is sometimes handled by casters instead of the player, to enable them to better focus on the game instead of answering questions from the audience or commenting on the strategies used and glitches exploited in the playthrough. AGDQ becomes something of an event, a continuous, weeklong series of speed runs played live with a physically present audience.

The Let’s Play Community

Much as the approach to casting games engages the community, Let’s Play also contains a communal element as part of expressing the playthrough. As Slowbeef’s history of Let’s Play mentioned, the earlier forms of LP came from games the community of an Internet forum would play democratically. But, even without the community directly playing the game, there are many ways that the LP is played for the community. Unlike a video game, which a player can engage exclusively for personal pleasure, an LP is created to be shared to other viewers, and without a formal advertising apparatus, it needs a community to enable a video to reach its audience. Here, I see an important element of restoring the video game’s nature as

18 These playthroughs could be considered analogous to a competition against a record time, not playing in direct competition with other competitors, but indirectly competing against the prior record-holder. Though there were also a handful of races with a caster exclusively providing the live commentary.
an interactive medium in remediating the game. The community, through the LPers engagement with that community, interacts with the personality presented by that LPer, which guides how an LPer creates their LP, much as how a player’s inputs effect the game in reaction to developments in the interface. I believe there are three particular communities worth looking at. First, the Let’s Play subforum on Something Awful is a good example of a closed community that was possibly the originator of Internet LPs and has had a continuing influence on shaping LP. Next, to the largest community of LPers, I see the Youtube LP community as an example of how LP is done on the largest scale, particularly with attention to the LPer PewDiePie, whose LPs make up Youtube’s most popular channel. Finally, in live streaming, I see a community that is immediately connected to the player, which has a level of “presentness” that’s difficult to match with other media.

On Something Awful’s LP subforum, each individual Let’s Play takes place on a subforum “thread,” which are made up of a chronological sequence of “posts” containing mostly text, but also can have links and images attached. The LPer is The Something Awful forums are not a publically accessible website. Accounts, necessary for posting and occasionally for reading threads, cost ten dollars, which limits a potential member’s ability to join the community. By having real constraints on who can be in and out of the community, Something Awful Let’s Play is able to establish itself as distinct from other platforms that don’t have any barriers to entry. In the first post of a July 18, 2012 thread, “The Let’s Play Rules Thread” then-moderator of the subforum Slowbeef establishes the rules by which all LPs on the forum must conform. In general, the rules address behavior (things such as “Don’t
shill for donations” and a prohibition on pornographic content) with penalties of probation (temporary prohibition from posting) or a ban (which cancels the user account, requiring spending another $10 to reactivate it) to ensure the standards of the community. But there is a particular rule that is unique to the Something Awful community

Don’t LP newer games. Three months after the game’s initial release, it is fine to LP them.

This rule applies to all games, including independent titles. Resident Evil 4 Wii Edition wouldn’t be considered to have a separate release from Resident Evil 4, but Resident Evil REmake would be considered a separate game from the original Resident Evil.

ROM hacks and fan translations don’t really count for the three-month rule. The rule also no longer applies for either expansions or DLC.

Additionally, you can LP indie games and projects before the three-month rule passes if you ask the game’s author/staff and they give you approval.

This rule exists to prevent spoiling, ire from developers, and stop people from rushing in here hot with new game excitement to be the first to LP Garfield: The Purrfect Crime. For any edge cases PLEASE ask us.

This post conveys some of the distinct elements of how the community defines and polices themselves. There’s an acknowledgement of the, at the time, potential, legal issues that Nintendo would later take action on. The three month rule only applying
to commercial releases also acknowledges the risk of the LP endangering a sale—even as advertisement, the playthrough poses the risk of a replacement. I also note the joking character at the end, which, matched with a later imposition, “DO NOT TAKE LET’S PLAY VERY SERIOUSLY,” (his bolding) attempts to set some of the tone for the community. These contrasting angles, the rules both try to take Let’s Play in a direction with a respect for business and community standards, and at the same time, demanding that the LPer not take the process too “seriously.”

While the Something Awful forums give a good example of a community of LPers and shows much of the development of the form, Let’s Play has become most popular being directly uploaded on Youtube19. Felix “PewDiePie” Kjellberg has become something of a global phenomenon, boasting the second most views of any channel on Youtube, at “just under 250m views,” and the most subscribers to his channel overall “having added 2.2m new ones in February taking his total to 24.4m” (The Guardian 13 March 2014). Hale looks at the LP culture on Youtube as an example of a schism against the standard practices of LP as established on Something Awful, and notes over “the past two or three years that YouTube has become the dominant venue for LP” (46). And Youtube LPs have, as best exemplified with my example from PewDiePie, become quite popular. The community for Youtube LPs is, as a result, much larger than any other community of Let’s Players. Bolter and Grusin have noticed that with remediation, “The goal is...to

19 While a Something Awful, or other web community, might host its videos on Youtube, the community does not locate itself on Youtube. A Youtube LP might likewise promote itself on another website (Something Awful explicitly forbids “recycling” LPs from elsewhere), its community is located on Youtube, in the comments and in video replies.
spread the content over as many markets as possible” (68). For Youtube LPs, there is only one distributor/marketplace (Youtube), so the effort to propagate the content to the greatest possible viewer base takes the form of aggressive attempts to push the video and channel by requesting “likes” and “subscribes,” Youtube’s viewer interactivity options. This would, through likes, promote the specific video, to reach casual browsers, and, through subscriptions, create a direct line to connect previous viewers with the continuous production of content. To further connect the viewer into the Let’s Play, to draw them into the channel. The “scarecam,” or “facecam,” is one such strategy to make the video more immediate. A facecam is a small, picture-in-picture video in the corner of the screen with a camera focused on the LPer’s face. It isn't universally present in Youtube LPers, but the act was popularized by PewDiePie’s use of it. Hale explains that the video works “to increase the personal connection between an LPer and
their fanbase, as well as provide an “authentic” view of the player during gameplay (or in the case of Vicas’s Super Mario 64 LP, to prove that he was actually using his feet to play)” (55). As Hale notes in that parenthetical, there are other uses for it, such as his example of Vicas’ LP, or for a speedrunner, adding a camera to show his inputs. But for PewDiePie’s camera, fixed on his face, it is there to show his reactions to the game, mostly to frightening moments, but it’s not there to provide any technical proof. Lorrie Palmer’s “Cranked Masculinity: Hypermediation in Digital Action Cinema” addresses how such digital additions work in digital cinema, specifically in the Cranked series of films, but PewDiePie makes use of similar techniques of hypermediacy, such as the facecam, creative subtitling, and adding image pop ups to his videos, to create a clearly artificial image. It breaks the attempt to create a simulation of the experience of gameplay while showing the player as someone who isn’t you. But in hypermediacy, “The point of contact between the viewing subject and the windowed world is itself part of the pleasure of digital media,” (5) where the facecam functions as a revelation of the artifice PewDiePie is making use of, showing both the viewer (the LPer) and the viewed object (the gameplay footage) and identifying even the creator as another part of the audience.

Interestingly, though Palmer notes the “hypermasculinity” created by the hypermediation of action cinema, it would be difficult to see a camera view expressly for the purpose of showing the central figure’s fear as an instance of expressing masculine power. For PewDiePie, putting himself into the video serves

20 This can be used to show off the difficulty or precise timing of a particular section, or just to “prove” the player is authentically playing the run, and not relying on computer assistance.
to make him a common figure, relatable to his audience. The aspect of hypermediation as a “function of speed,” as Palmer notes, moves against him, rather than as the velocity of “on screen masculine action, of editing, and of mobility of vision” (7). As Bolter and Grusin noted, “hypermediacy has become a formal mark of ‘liveness’ on television,” (194) and PewDiePie seeks to maintain that liveness, even with uploading videos every day. If he cannot maintain that level of presence, he risks losing viewers to other, more present Youtube LPers, or even other, more modern technologies.

Community involvement is also seen in the act of live streaming games. Services, such as twitch.tv, enable players to directly broadcast their playthroughs and give commentary to their audiences in real time. The popularity of this method has a logical connection to Hale’s notice of how quickly Youtube LPers wish to get their content out—with live streaming, the viewer can be less than thirty seconds removed from the player’s (here called the “streamer”) actions, and even, through the use of a chat section, be in direct dialogue with the player or other commentators who are in the stream. Unlike casting games or AGDQ, this connection can be significant, as it generally moves slower (as there are fewer viewers and thus, fewer comments21) and is more open to discussion. It enables the viewer to communicate with the streamer, to ask questions or to recommend actions in the game or future games to stream. As Bolter and Grusin noted about

21 Commentary on a large stream, such as with AGDQ or Twitch Plays Pokemon moves so fast that it is difficult to finish a post before it has been pushed off the screen. Viewers also often “spam” the chat, posting copy-pasted in-jokes, advertisements for Internet services, and nonsense strings of characters. A large enough stream can develop its own culture, and participating in that culture becomes its own element.
television and film, television’s great strength was its “presentness,” and a live stream is about as present as a medium can become with current technology. “Although a vast network of technical devices...typically intervene between the origin and delivery of the image, we still behave towards television as if it were a direct channel between ourselves and the event” (188). For streams, this intervention between the viewer takes the form of network latency and the streamers ability to monitor both the chat and play the game, giving a level of immediacy unachievable with prior forms of broadcasting. Individual streams are even referred to as the player’s “channel,” to underscore the connection between live streaming video games and television, and to emphasize both the direct flow of information and the importance of the personality who operates the stream.

As Derrida writes, “But the supplement supplements. It adds only to replace” (145). Remediating a video game playthrough into an online video relies on different strategies and approaches. Competitions, whether for analog sports or video games, are supplemented by the presence of casters, providing helpful commentary and creating a sense of involvement in the competition. Informative playthroughs attempt to show off as many possible outcomes of the game as possible, trying to reveal what the game is as fully as possible, or show off the player’s skill, either in playing or breaking the game. And then there are social playthroughs, relying on one or more personalities to incorporate with the gameplay video and to create its own narrative. Commentary can come live, where the unpredictability and uncertainty of the gameplay can be at the forefront, or it
can be in post, which is better suited for attempting to show as much variety as the genotype permits in the game (by editing together multiple takes of the same challenge, to show different potential outcomes). In all these multiple ways of presenting the game for observers, each is trying to engage the void created through the recording and broadcasting removing the gameplay.

Conclusion

I have a lot of hope for the video game as a medium. Even though, as Kaklamanidou and ilia Katsaridou noted, formal approaches to remediating video games continues to focus on the “narrative common ground,” (266) the elements of the phenotype, I see opportunity with less formal, less artistically acknowledged approaches. Let's Play, casting, and streaming, or, as Hale deemed them, “playing video games for the internet,” (5) are all fairly approaches to games that emphasize what the player enjoyed of the game—the gameplay. As Aarseth writes, “It could be argued that the reader is (or at least produces) the story” (112, his italics). As video games become more sophisticated as increased attention and investment are put into them, there is an increased focus on the phenotypic elements, such as games boasting celebrity voice acting, use of motion-capture, or thematic concepts and plots on the level of film and literature. While I see this, and I doubt that it is the best way to dedicate the resources of game production, I still see these approaches emphasizing an attempt to engage the viewer in the gameplay, instead of just the common ground of shared experience.
Looking at video games for the potential they have in their coding and the expression of that code, as genotype and phenotype, into cybertexts and experiencing the collapse of that text into the playthrough is what video games are about. Whether, as Bainbridge and Bainbridge found, the player tries to exploit the mechanics to create a new route through the game, or if he or she takes an approach as Bartle's Diamond, Heart, Spade, or Club, the player is creating a new narrative through the ludology, forming a personal experience and story to that game. Looking at this playthrough from the outside, without the gameplay, reveals how important the gameplay is to a game. The need for a supplement reflects this importance, even for the vast differences in interests between different groups for what makes a good supplement shows the multitude of ways to approach and engage a video game. McLuhan was right, the form of the game is of first importance, and the means of critically engaging games should first look there.
Works Cited

Hansen, Mark B. N. New Philosophy for New Media. Cambridge: The MIT Press,

Hocking, Clint. “Ludonarrative Dissonance in Bioshock.” *Click Nothing.*

Kaklamanidou, Betty and Maria ilia Katsaridou. “Silent Hill: Adapting a Video Game.”

“Record gameplay video clips with Game DVR on Xbox One.” *Xbox Support.*

“Rules.” *Speed Demos Archive.* 17 April 2013. www.speeddemosarchive.com

Somecallmemike. “I just give them controllers that are not plugged in and then they play like this for hours.” *r/gaming.* Reddit. 26 December 2012. Web. 11 March 2014.

Games Cited

Ensemble Studios. *Age of Empires 2: The Age of Kings*. Microsoft, 30 September 1999. PC.

Firaxis Games. *XCOM: Enemy Unknown*. Take-Two Interactive, 9 October 2012. PC.

Mythos Games. *UFO: Enemy Unknown* Micro Prose, Hasbro Interactive, 2k Games, March 1994. PC.

Nintendo EAD. *Super Mario 64*. 23 June 1996. Nintendo 64.

Orteil. *Cookie Clicker*. 2013. PC.

Ruiz, Susana. *Darfur is Dying*. TAKE ACTION Games, April 2006. PC.

Yager Development. *Spec Ops: The Line*. Take-Two Interactive, 26 June 2013. PC.
Author’s screenshot. 11 March 2014.

SpeedDemosArchiveSDA. “Super Metroid: SPEED RUN (4-Way Race) (0:45:51) #AGDQ.” Youtube. 5 February 2014. Video. Author’s screenshot. 11 March 2014.