1. Kidney
(for LS 1, LS 4, LS 5 and LS 9 only)

A. Marrow of the kidney, Medulla renis
B. Cortex of the kidney, Cortex renis
1. Renal vein, Vena renalis
2. Renal artery, Arteria renalis
3. Ureter
4. Pelvis of the kidney, Pelvis renalis
5. Calyces of the kidney, Calices renales
6. Renal papillae, Papillae renales
7. Renal pyramids, Pyramides renales
8. Collecting duct
9. Contort renal tubule II, Tubulus renalis contortus II
10. Loop of Henle
11. Contort renal tubule I, Tubulus renalis contortus I
12. Corpuscles of the kidney, Corpuscula renis
13. Interlobular arteries, Aa. interlobulares
14. Afferent vessel, Vas afferens
15. Efferent vessel, Vas effrcrens
16. Arcuate arteries, Aa. arcuatae
16a. Capillary network
17. Interlobular veins, Vv. interlobulares
18. Arcuate veins, Vv. arcuatae
19. Papillary ducts, Ductus papillares
20. Suprarenal gland, Glandula suprarenalis (for LS 1 only)

- not concerning LS 5 as the finer construction of the kidney is represented on the models LS 1, LS 4 and LS 9 only.

The kidney is a composite tubulous gland. It serves for the excretion of useless substances.

Structure:
At the surface it has a tough capsule which can be removed easily. Underneath it the cortex of the kidney, Cortex renis (B), is situated; it contains the urine forming organs. Next to the cortex is the marrow of the kidney, Medulla renis (A); it contains the urine secreting organs.

Blood-Vessels:
The renal artery, Arteria renalis (2), gives off main branches, which enter into the renal substance at the side of the renal pyramids, Pyramides renales (7). At the border between medulla and cortex they divide into the arcuate arteries, Arteriae arcuatae (16); they run parallel to the surface and give off the interlobular arteries, Arteriae interlobulares (13). Out of these arise fine short lateral branches, the afferent vessels (14); they dissolve into a vascular bundle, Glomerulus, however, become fused again and form the efferent vessels (15).

The efferent vessels flow over a capillary network (16a) into the interlobular veins, Venae interlobulares (17); the latter are branches of the arcuate veins, Venae arcuatae (18). The Venae arcuatae are main branches of the renal vein, Vena renalis (1).

The Urinary Tract:
The urine forming organs of the kidney are the corpuscles of the kidney (Corpuscula renis [12]). A corpuscle of the kidney consists of:

a) a vascular bundle, Glomerulus,
b) the glomerular capsule (Bowman's capsule = Capsula glomeruli).

It is a globular, sack-shaped intussusception of the end part of the uriniferous tube, which encompasses the vascular bundle. The glomerular capsule consists of two parts: the inner layer, which rests on the glomerulus, and the outer layer, which forms a smooth hollow sphere.

These two layers are separated from one another up to the neck of the glomerular capsule by a narrow space.

The uniferiferous tubes are the urine secreting organs of the kidney. A uriniferous tube consists of the following sections:

- convoluted tubule (11)
- loop of Henle (10)
- contort renal tubule (9)
- collecting duct (8).

Numerous junctional tubes flow together into the collecting duct, which forms together with other collecting ducts great collecting ducts (or: papillary ducts), Ductus papillares (19), in the inner zone of the medulla. At the apex of the papilla they flow into the calyces of the kidney, Calices renales (5). They unite in the pelvis of the kidney, Pelvis renalis (4), from where the ureter (3) emerges.

The Function:
The urinary organs have the task to excrete the urine, that is the liquid and soluble excreta (excretions), from the blood and to push it out of the body. The blood, which flows through the vascular bundles, carries the metabolic products of the different organs of the body. The products, the nitrogenous substances in particular, diffuse through the inner layer of the glomerular capsule into the uriniferous tube. The in-
ner layer thus serves as a filter; in normal conditions it is impermeable to protein or sugar. The metabolic products are transformed by the parietal cells of the uriniferous tube into the final form of the urine. The urine is accumulated in the collecting ducts and in the renal calyces. From the renal pelvis it flows into the ureter, which, due to its smooth muscular structure, contracts downwards continuously and rhythmically spurting each time some drops of urine into the bladder, which becomes gradually filled in by this process.

If too little urine is excreted, as a result of a kidney disease, uraemia will arise.

2. Nephron
(for LS 6 and LS 9 only)
1. Corpuscle of the kidney with Glomerulus and Bowman’s capsule
2. Main section
 a) Pars convoluta, Tubulus renalis contortus I
 b) Pars recta, descending limb (thick portion) of Henle’s loop
3. Section of transition: thin portion of Henle’s loop
4. Central section

3. Kidney Corpuscle
(for LS 7 and LS 9 only)
We distinguish the Glomerulus (1) and the Bowman’s capsule, Capsula glomeruli (2). The corpuscle as a whole is globular. Its transition into the renal tubules is frequently narrower than the remaining convoluted section, and is, therefore, called cervical portion, Collum (3). One distinguishes between a vascular pole (5) and urinary pole (4). At the urinary pole the urine leaves the Bowman’s capsule through the cervical portion of the renal tubule. At the vascular pole the Glomerulus is joined to the capsule; here the vessels enter and go out. The afferent (entering) vessel, Vas afferens (6), as well as the efferent (outgoing) vessel, Vas efferens (7), are arteries and, therefore, they are called Arteriola afferens and Arteriola efferens. The urinary pole lies usually exactly opposite to the vascular pole. The Glomerulus is interposed between the Arteriola afferens and the Arteriola efferens as an arterial network. Its loops are capillaries in their structure. The Arteriola efferens merges into the capillary network of the cortex. The Arteriola afferens separates into a quite great number of branches, forming independent loops. Later they unite to the Vas afferens. The individual entangled loops (8) are separated from each other, thus the Glomerulus shows deep indentations and has the appearance of being lobulated. The entire surface of the loops is covered with epicytes. These epicytes (9) constitute together the inner lamella of the Bowman’s capsule. At the vascular pole the inner lamella merges in that of the outer wall: outer lamella (10) of the Bowman’s capsule. In addition to a single-layered pavement epithelium the outer lamella consists of a tender transparent membrane. Towards the urinary pole the pavement cells become taller and taller and form thus a gradual transition to the tall cylindrical cells of the convoluted section of the attached uriniferous tubule.

© SOMSO-models are copyrighted.